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Abstract

Repeat Kinase 2 (LRRK2).

significant locomotor impairment.

involved in PD pathogenesis.
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Background: Parkinson’s disease (PD) is the most common movement neurodegenerative movement disorder. An
incomplete understanding of the molecular pathways involved in its pathogenesis impedes the development of
effective disease-modifying treatments. To address this gap, we have previously generated a Drosophila model of
PD that overexpresses PD pathogenic mutant form of the second most common causative gene of PD, Leucine-Rich

Findings: We employed this model in a genetic modifier screen and identified a gene that encodes for a core subunit
of retromer — a complex essential for the sorting and recycling of specific cargo proteins from endosomes to the
trans-Golgi network and cell surface. We present evidence that overexpression of the Vps35 or Vps26 component
of the cargo-recognition subunit of the retromer complex ameliorates the pathogenic mutant LRRK2 eye phenotype.
Furthermore, overexpression of Vps35 or Vps26 significantly protects from the locomotor deficits observed in mutant
LRRK2 flies, as assessed by the negative geotaxis assay, and rescues their shortened lifespan. Strikingly, overexpressing
Vps35 alone protects from toxicity of rotenone, a neurotoxin commonly used to model parkinsonism, both in terms of
lifespan and locomotor activity of the flies, and this protection is sustained and even augmented in the presence of
mutant LRRK2. Finally, we demonstrate that knocking down expression of Vps35 in dopaminergic neurons causes a

Conclusions: From these results we conclude that LRRK2 plays a role in the retromer pathway and that this pathway is

Keywords: Parkinson's disease, LRRK2, VPS35, Retromer, Endolysosomal pathway, Drosophila, Genetics, Rotenone,

Background
A growing unmet need for better treatments of neurode-
generative disorders, including Parkinson’s disease (PD),
highlights the importance of research into the pathological
mechanisms involved in the disease process.

Identification of several causative genes has led to new
insights into PD pathogenesis. Leucine-Rich Repeat Kinase
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2 (LRRK2) (GenBank: AY792511) is the second most com-
mon causative gene of PD. Thus far, seven point mutations
within LRRK2 have been demonstrated to segregate with
the disease and numerous common and rare LRRK2
gene variants that increase susceptibility to PD have
been described. LRRK2 has also been linked to tau [1]
and a-synuclein [2-4] pathologies and therefore may be a
key player upstream of cell death pathways involved in
other neurodegenerative processes [5]. LRRK2 is a kinase
with a Roc-COR catalytic core that has a sequence hom-
ology to Rab GTPases. Other domains include LRR and
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WD-40, predicted to be involved in protein-protein in-
teractions. Despite promising new findings, exactly how
LRRK2 contributes to cell death/survival and what is its
physiological function, still remains largely unknown.

Although no animal model developed thus far has been
able to reproduce all key pathological features of PD,
transgenic Drosophila models have proven particularly
useful, as they faithfully reproduce dopaminergic (DA)
neuronal death and locomotor deficits [6-8]. Drosophila
melanogaster is a highly suitable model organism for
studies of gene function, interactions and elucidation of
genetic pathways. Notably, Drosophila compound eye
can be successfully employed in unbiased genome-wide
genetic modifier screens in vivo [9-11]. Results from
such screens and other research in Drosophila have
recently generated important new insights into the
pathophysiology of several neurodegenerative disorders,
including PD [12].

To help dissect the molecular processes involved in
PD pathology, we recently generated a Drosophila overex-
pressing human LRRK2 with a PD pathogenic 12020T
mutation within the kinase domain [13]. This transgenic
model has been successfully used by other researchers
[14,15]. As shown previously by our team [13] and in-
dependently validated by others [16-18], expressing
pathogenic mutant LRRK2 in Drosophila DA neurons
recapitulates many of the cardinal features of PD, in-
cluding the loss of DA neurons and locomotor deficits
[13]. In addition, LRRK2 mutant flies present with an
abnormal eye phenotype, allowing us to perform an
in vivo genetic modifier screen in search for genetic
interactors of LRRK2. Here, we provide evidence that
LRRK?2 genetically interacts with Vacuolar protein sorting
35 (Vps35) (GenBank: AE013599.4), a core component of
the retromer complex.

Results

Vps35 partially rescues the eye phenotype of flies
expressing pathogenic mutant LRRK2

In our studies, we employed the commonly used UAS-Gal4
system for a cell/tissue-specific expression [19]. As we have
previously shown [13], expression of one of the PD-causing
mutants of LRRK2, LRRK2(12020T), under an eye-specific
(GMR) promoter at 29°C causes a rough eye phenotype
with pigmentation deficits. Notably, 50.03%+/-6.58% of
LRRK2(12020T) eyes have black lesions (Figure 1). Similar
lesions were reported in other fly models of neurodegen-
eration [20-24] and seem to be indicative of neuronal
(photoreceptor) death occurring later in the eye develop-
ment, after a full differentiation [21]. Such black lesions
are very rare in control (GMR alone) flies (3.03%+/-3.03%
of eyes) (Figure 1). Employing this LRRK2(12020T) eye
phenotype as a read-out in a genetic modifier screen, we
identified Vacuolar protein sorting 26 (Vps26) (GenBank:
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NM_130596.2) as a new LRRK?2 interacting gene. Specific-
ally, overexpressing endogenous Drosophila Vps26 in the
eye caused a mild eye phenotype, including an occasional
presence of black lesions (11.21% +/- 2.12% of flies)
(Figure 1A and B). Strikingly, overexpressing Vps26 in
the LRRK2(12020T) flies rescued the black lesion eye
phenotype of the LRRK2 mutants (10.10% +/- 2.12%;
P < 0.05; F(3, 9) = 13.30) (Figure 1A and B).

Vps26, together with Vps35 and Vps29, are the three
core components of the cargo-recognition subunit of the
retromer complex. Because human homologue of Vps35,
VPS35 (GenBank: NC_000016.9), has been recently iden-
tified as a new candidate PD gene (3, 4), our first goal was
to determine whether LRRK2 also genetically interacts
with Vps33.

Drosophila Vps35 (CG5625) is located on the right
arm of the second chromosome and has 61% identity with
its human homologue. Again, an eye-specific overexpres-
sion of endogenous Vps35 alone caused a mild eye pheno-
type that included the occasional presence of black lesions
(7.56% of eyes, +/- 3.92%) (Figure 1A and C). Similar to
Vps26, increased Vps35 expression completely rescued the
black lesion phenotype of LRRK2 mutants: none of the
analyzed eyes displayed any black lesions (P < 0.0001; F
(2, 6) =102.3) (Figure 1A and C). This suggests that
both Vps26 and Vps35 genetically interact with LRRK2
in the Drosophila eye.

Vps35 rescues the locomotor and lifespan deficits of flies
expressing pathogenic mutant LRRK2

One of the cardinal characteristics of PD is a loss of
DA neurons which has a negative impact on move-
ment. Therefore, in our next experiments we used a
Dopa-decarboxylase-Gal4 (Ddc-Gal4) driver line that
is commonly used in Drosophila PD research to target
gene expression to DA neurons [6,25].

To quantify locomotor activity, we employed a well-
established negative geotaxis climbing assay. As we have
shown previously, overexpressing LRRK2(12020T) in DA
neurons causes significant locomotor deficits [13]. Com-
pared to control, the climbing ability of LRRK2(12020T)
flies was reduced by 61.45% +/- 7.49% on day 5 (specifically,
28.04% +/- 5.45% of LRRK?2 flies were able to reach the line
within 5 seconds, compared to 72.75% +/- 7.89% of control)
(Figure 2). Similar to the eye, this LRRK?2 phenotype can be
fully rescued either by overexpressing Vps35 in DA neurons
(70.00% +/- 6.36% of flies overexpressing Vps35 and mu-
tant LRRK2 were able to cross the line within 5 seconds)
(P <0.0001; F (4, 77) = 8.20) (Figure 2B), or by overexpress-
ing Vps26 (64.12% +/- 3.28% of flies overexpressing Vps26
and mutant LRRK2 in DA neurons crossed the line within
5 seconds) (P < 0.0001; F (3, 225) = 11.31) (Figure 2A). Simi-
lar to day 5, Vps35 or Vps26 overexpression rescued the
LRRK2(12020T) phenotype on day 10 (Figure 2A and B). By
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Figure 1 Eye-specific overexpression of Vps26 or Vps35 rescues the black lesion phenotype caused by expression of LRRK2(12020T). A)
Representative stereomicroscope images of eyes overexpressing Vps26 (upper panel) and Vps35 (lower panel). B) Quantification of black lesions in
flies overexpressing Vps26. Total of 314 eyes from 2-6 independent crosses/genotype (males and females) was analyzed. C) Quantification of black

lesions in flies overexpressing Vps35. Total of 312 eyes from 3 independent crosses/genotype (males and females) was analyzed. All flies were
reared at 29°C. Statistical analysis by One-Way ANOVA, Bonferroni's post-test (P<0.0001). Statistically significant difference compared to control
(GMR alone) is denoted as ** for P < 0.001, or *** for P < 0.0001. Statistically significant difference compared to GMR/+,LRRK2(12020T)/+is denoted

as # for P < 0.05, or ### for P < 0.0001.

day 20 however, the locomotor activity of all flies, includ-
ing control, was severely impaired due to age (Figure 2A
and B). Please note that the locomotor activity of flies was
always assessed at three different time intervals (5, 10 and
30 seconds), with similar results (data not shown). In
addition to the locomotor activity, we also assessed
survival of these flies. Compared to the control (Ddc
alone), survival of flies expressing LRRK2(I2020T) in
DA neurons was significantly shorter. This phenotype was
completely rescued by overexpression of Vps35 (Figure 3).

Altogether, these data validate that mutant LRRK2(120207T)
functionally interacts with Vps35 and Vps26 in DA neurons
and that this interaction is important for the locomotor
activity and basal survival of the flies.

Overexpression of Vps35 rescues locomotor deficits of
other LRRK2 mutants

The 12020T substitution is localized within the kinase
domain of LRRK2. Our next question was to determine
whether the functional interaction between LRRK2 and
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Figure 2 Overexpression of Vps26 or Vps35 in DA neurons rescues LRRK2(12020T) locomotor deficits. (A) Overexpression of Vps26 in DA
neurons. (B) Overexpression of Vps35 in DA neurons. N = 3-12 cohorts of ten per genotype. All flies were reared at 29°C. Statistical analysis:
Two-Way ANOVA, Tukey's post-test. Statistically significant difference compared to control (Ddc alone) is denoted as * for P < 0.05 and *** for
P < 0.0001. Statistically significant difference compared to Ddc/+;LRRK2(12020T) is denoted as ## for P < 0.001 and ### for P < 0.0001.

components of the retromer complex is specific to this  39.93% +/- 2.73% of LRRK2(I1122V) flies were able to
particular mutation. To answer this question, we employed  reach the line within 5 seconds, compared to 72.75% +/-
two other transgenic mutant LRRK2 lines: the LRRK2  4.27% of control flies, P < 0.0001; F (3, 126) = 23.82, re-
(Y1699C) line carrying a confirmed PD pathogenic muta-  spectively) (Figure 4A and B), which is consistent with
tion in the COR domain of LRRK2 [26-28], and the our previous results [13]. Importantly, overexpressing
LRRK2(I1122V) line with a putative pathogenic mutation ~ Vps 35 in either one of the two LRRK2 mutant lines re-
in the LRR domain [26,27]. sulted in a complete rescue of the locomotor impairment

Similar to LRRK2(I2020T), expressing either one of  (74.40% +/-3.42% and 65.01% +/- 3.55%, respectively, of
the two mutant forms of LRRK2 in DA neurons caused the double transgenic flies were able to reach the top
a significant impairment locomotor activity on day 5  within 5 seconds on day 5; P <0.0001) (Figure 4A and B).
(24.71% +/- 3.44% of LRRK2(Y1699C) flies were able to  The results were very similar on Day 10 (Figure 4A
reach the line within 5 seconds, compared to 63.21% +/- and B). These results demonstrate that the functional
5.30% of control, P<0.0001; F (3, 177) =50.60; and interaction between LRRK2 and Vps35 is not exclusive
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Figure 3 Overexpression of Vps35 in DA neurons rescues the shortened lifespan of LRRK2(12020T) flies. N =8-11 cohorts of ten per
genotype. All flies were reared at 29°C. Statistical analysis: Two-Way ANOVA, Tukey's post-test. Statistically significant difference compared to
Ddc/+,LRRK2(12020T)/+is denoted as # for P < 0.05.
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Figure 4 Overexpression of Vps35 in DA neurons rescues locomotor deficits of other PD mutants. (A) Overexpression of Vps35 in LRRK2
(Y1699C) mutants. (B) Overexpression of Vps35 in LRRK2(11122V) mutants. All flies were reared at 29°C. N = 3-7 cohorts of ten. Statistical analysis:
Two-Way ANOVA, Tukey's post-test. Statistically significant difference compared to control (Ddc alone) is denoted as ** for P < 0.001, or *** for
P < 0.0001. Statistically significant difference compared to Ddc/+;LRRK2(12020T)/+is denoted as ##i# for P < 0.0001.
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to the kinase domain mutant, and provide further evi-
dence that LRRK2 may play a role in the retromer-
dependent pathway.

Knocking down components of the cargo-recognition
subunit of the retromer complex impairs locomotor activity
Vps35 is the most recently confirmed causative gene of
PD. However the mechanism by which mutation in Vps35
leads to PD is completely unknown. To better understand
the importance of retromer for the physiological function
of DA neurons, we analyzed the effect of knocking down
expression of genes encoding for components of the retro-
mer complex.

First, we analyzed the effect in the eye. Knocking down
expression of Vps26 in the eye caused a significant eye
phenotype (35.84% +/- 5.43% of Vps26 knock-down eyes
had a black lesion, compared to 2.78% +/- 3.4% of control
eyes; P<0.05 F (3, 15)=7.01) (Figure 5A and B). This
phenotype was similar to the eye phenotype of the LRRK2
(I12020T) mutant (44.71 +/- 6.49% of LRRK2(12020T) eyes
had black lesions) (Figure 5A and B). Our next goal was to
assess whether these two phenotypes are additive. An
additive effect would indicate that the two genes likely act
on two independent cellular pathways. We observed that
the eye phenotypes of LRRK2(I12020T) expression and
Vps26 knock-down were not additive (36.21% +/- 3.02%
of double transgenic eyes had a black lesion) (Figure 5A
and B), suggesting that the two genes act on the same
pathway.

The next step was to assess the effect of knocking down
components of the retromer complex in DA neurons.
In DA neurons, knocking-down expression of Vps35 or
Vps29 caused a significant impairment in the loco-
motor activity (29.65% +/- 2.44% and 40.68 +/- 2.93%
of flies, respectively, reached the top within 5 seconds
on day 5, compared to 72.75% +/- 4.27% of control
flies; P < 0.0001, F(5, 320) = 9.335) (Figure 5C). Similar

to the effects seen in the eye, these climbing deficits
were not additive with those observed in the LRRK2
(I2020T) mutants (Figure 5C), supporting our results
that Vps35, Vps26 and Vps29 share a common pathway
with LRRK?2.

Vps35 protects from rotenone toxicity

Rotenone is a pesticide and a complex I inhibitor that can
be used to model parkinsonism [29]. In our experiments,
we exposed the flies to rotenone to assess the role of
LRRK2-Vps35 interaction under conditions of additional
cellular stress.

Treating control flies with rotenone has a profound
effect on their survival. Although we previously showed
that pan-neuronal expression of LRRK2(I12020T) sensi-
tized flies to low doses of rotenone [13], overexpression
of LRRK2(12020T) in DA neurons did not seem to signifi-
cantly affect survival of flies treated with 1 mM rotenone
(Figure 6A). Importantly, overexpressing Vps35 alone of-
fered a mild but significant protection against rotenone,
compared to control flies (Figure 6A). To our surprise
however, co-overexpressing Vps35 and LRRK2 in DA
neurons resulted in a substantial synergistic protective
effect against rotenone, demonstrated as a significantly
better survival of these flies compared to all other groups
(P <0.0001; F (74, 190) = 3.45) (Figure 6A).

Next, we assessed the climbing ability of the rotenone-
treated flies. Rotenone-treated LRRK2(12020T) flies had
somewhat unexpectedly a slightly higher locomotor ac-
tivity compared to control flies (Figure 6B). Again, Vps35
overexpression alone significantly improved locomotor
activity of the rotenone-treated flies (Figure 6B) and this
effect was sustained even in the presence of LRRK2
(12020T) (P = 0.0011; F (30, 271) = 2.10) (Figure 6B).

Because Vps35 overexpression protected from rotenone,
our next goal was to test whether silencing Vps35 would
sensitize the flies to rotenone toxicity. This would suggest
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locomotor impairment. The phenotypes are not additive with LRRK2(12020T) phenotypes. A) Representative stereomicroscope images and B)
Quantification of black lesions in the eyes Vps26 knock-down flies. Total of 444 eyes from 3-9 independent crosses/genotype (males and females)
was analyzed. Statistically significant difference compared to control (GMR alone) is denoted as * for P < 0.05 and ** for P < 0.001. Data were
statistically analyzed by One-Way ANOVA, Bonferroni's post-test. C) Effect of Vps35 or Vps29 knock-down on locomotor activity. N = 3-13 cohorts

of ten. Statistical analysis: Two-Way ANOVA, Tukey's post-test. Statistically significant difference compared to control (Ddc alone) is denoted as
* for P <0.05, ** for P < 0.001, or *** for P < 0.0001. All flies were reared at 29°C.

that endogenous Vps35 is involved in the cellular protec-
tion against rotenone. However, our results show that
knocking-down Vps35 had no statistically significant effect
on climbing or survival of rotenone-treated flies, compared
to control (Figure 6A and C).

Altogether, these data point to a strong functional
interaction between LRRK2 and Vps35 in DA neurons
which may be especially important under conditions of
cellular stress. Furthermore, our data for the first time
suggest that rotenone interferes with the endolysosomal
pathway, although the exact mechanism is not clear.

In summary, we present evidence that overexpression
of Drosophila Vps35, a core component of the retromer
complex, rescues the eye phenotype, locomotor deficits
and shortened lifespan of the LRRK2(12020T) expressing
flies. Similar to Vps35, overexpressing Vps26 rescued the
eye and locomotor phenotypes, thus validating our find-
ings. Moreover, we confirmed that overexpression of
Vps35 also rescues the locomotor phenotypes of two
other LRRK2 mutants. Furthermore, we demonstrate that
knocking down Vps35 leads to a similar degree of loco-
motor impairment and eye damage as the mutant LRRK2,
but that the phenotypes of the two genes are not additive.

Finally, we show that while silencing Vps35 has no signifi-
cant effect on locomotor activity or survival of rotenone-
treated flies, overexpressing Vps35 alone protects from
cellular stress caused by rotenone, as demonstrated by
prolonging lifespan and improving locomotor deficits,
and that this protection by Vps3S5 is sustained and even
augmented in the presence of mutant LRRK2.

Discussion
Several previous studies have indicated that LRRK2 plays
a role in the endolysosomal trafficking [30,31], protein
sorting and transport [32] or trafficking of synaptic vesi-
cles [31,33]. For example, overexpression of LRRK2 is
associated with enlarged lysosomes, vacuolization and/or
large cytoplasmic punctate structures [30,34,35], suggest-
ing a problem with vesicular trafficking. Here we present
evidence that LRRK2 and Vps35 functionally interact, and
demonstrate how this interaction in DA neurons affects
locomotor activity, lifespan and response to rotenone.
LRRK?2 is the most common cause of the monogenic
form of PD, and a common risk factor for PD. To further
highlight the relevance of our data to PD, the human
homologue of Vps35, VPS35, has recently been identified
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as the latest confirmed causative gene of the typical late
onset PD, with ¢.1858 > A (p.Asp620Asn) being the most
common VPS35 mutation [36,37]. This finding has been
replicated by several independent analyses [38-42]. How-
ever, the mechanism by which VPS35 is involved in PD
pathogenesis is entirely unknown.

Our data indicate that LRRK2 and components of the
cargo-recognition subunits of the retromer complex Vps35
are part of the same molecular pathway, with mutant
LRRK?2 likely being upstream and negatively regulating
retromer. Furthermore, our gene knock-down data sug-
gest that the mechanism by which the PD pathogenic
mutant VPS35 is involved in PD pathogenesis may be a
dominant negative mechanism.

VPS35 is a core component of the evolutionarily con-
served retromer complex that is predominantly expressed
on dynamic endosomal membranes [43-45], to regulate
sorting, packaging and directing transport of specific pro-
teins to the trans-Golgi network or cell surface. Thus, the
retromer complex prevents specific proteins from being
degraded in the lysosome [46]. Retromer consists of two
subcomplexes: a cargo recognition subcomplex com-
posed of VPS35, VPS26 and VPS29 [47], and a membrane-
interacting subcomplex composed of sorting nexins (SNXs)
that bind to a PI3-P-rich endosomal membrane [48]. By

regulating protein sorting, retromer is involved in many
diverse cellular processes, including but not limited
to trafficking of SNARE proteins and receptors such
as P-adrenergic [49] or cation-independent mannose
6-phosphate receptors [50], or regulating homeostasis
of intracellular glucose, copper and iron.

Although its physiological function in neuronal cells is
not yet fully elucidated, it is clear that the retromer-
dependent pathway plays a role in etiology or pathophysi-
ology of a number of neurodegenerative processes. For
example, genetic variations of SorLa [51] or sorCS1 [52],
encoding for receptors that are cargoes for the retromer-
dependent pathway, are associated with Alzheimer’s
disease, expression of VPS35, VPS26, sortilin and SorLa is
altered in Alzheimer’s disease patients [53,54] and interfer-
ing with expression of VPS26 or VPS35 [55] causes accu-
mulation of amyloid B and APP derivatives in exosomal
compartments [56]. Further research into this pathway may
therefore offer important clues and insights into the patho-
genesis of PD and other neurodegenerative disorders.

MacLeod et al. recently published a paper that demon-
strates an interaction between Vps35 and another LRRK2
mutant, LRRK2(G2019S), where Vps35 protected against
neuronal death caused by LRRK2(G2019S) [57]. Our data
presented here independently validate these findings,
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and extend the relevance of these findings to two other
pathogenic LRRK2 mutants, LRRK2(I2020T) and LRRK2
(Y1699C), and one putative pathogenic mutant LRRK2
(I1122V). More importantly however, we for the first
time characterize the functional role of this interaction
in regulation of the locomotor activity, lifespan, sensitivity
to rotenone and in retinal degeneration. Furthermore, our
data provide evidence that overexpressing Vps35 alone
protects from rotenone, while knocking down Vps35 has
no significant effect on rotenone toxicity. This is consistent
with recently published data showing that overexpression
of Vps35 protected in vitro against MPP+, another neuro-
toxin commonly used to model PD, but Vps35 knock-
down had no significant effect on cell viability under the
same conditions [58].

Conclusions

In summary, these data provide further evidence in
support of the hypothesis that LRRK2 plays a role in
the endolysosomal pathway and that the pathology
caused by mutant LRRK2 may be at least partly linked
to a disruption of this important protein sorting and
recycling cellular process. However, how exactly this
pathway contributes to PD pathology is at present en-
tirely unknown. Elucidation of new molecular path-
ways involved in the pathogenesis of PD may bring
forward novel pharmacological targets for better treatment
strategies. Therefore, a better understanding of the retro-
mer pathway and its relation to PD pathogenesis deserves
further investigations.

Materials and methods

Drosophila genetics

UAS-LRRK2(12020T), UAS-LRRK2(Y1699C) and UAS-
LRRK2(11122V) lines were characterized previously [13]. P
{EPgy2}Vps355¥#2% /CyO and P{EP}Vpps26G2008 w*/EM7h
flies were obtained from the Bloomington Drosophila Stock
Center (BDSC, Indiana University). These lines contain an
empty UAS element upstream of endogenous Drosophila
Vps35 or Vps26 gene, respectively, allowing for a Gal4-
dependent cell/tissue specific gene overexpression [59,60].
Ddc-Gal4 and GMR-Gal4 lines were both obtained from
BDSC. For the gene knockdown studies, we used the fol-
lowing lines from BDSC: yI sc* v1; P{TRiP.HMS01858}
attP40 (expresses dsRNA for RNAi of Vps35 under UAS
control); y1 sc* v1; P{TRiP.HMS01877}attP40 (expresses
dsRNA for RNAi of CG4764 (FBgn0031310) under UAS
control), and y1 vI; P{TRiP.HMS01769}attP40 (expresses
dsRNA for RNAi of Vps26 under UUAS control). To in-
crease transgene expression under the temperature-
sensitive UAS-Gal4 expression system [13], all flies were
cultured on a standard cornmeal medium at 29°C (12-hrs
dark/light cycle), except for the rotenone-treated flies
(see below).
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Eye phenotype

To assess the eye phenotype, we used GMR-Gal4d to
drive the expression of the transgenes in the eye. All
crosses and F1 generations were reared at 29°C. At 10 days
of age, their eyes were analyzed under a stereomicroscope
(Zeiss).

Negative geotaxis assay and survival assay

The transgenes were overexpressed in DA neurons under
a Ddc promoter. Progeny of the appropriate genotype
were divided into cohorts of ten, and the flies were sub-
jected to a negative geotaxis climbing assay at 5, 10 and
20 days post-eclosure. We recorded and counted flies that
crossed a line 8 cm above the base of a transparent tube
within 5, 10 and 30 seconds after being gently tapped
down. All behavioral experiments were performed at
room temperature under standard light conditions. To
ensure comparable conditions in each vial, we placed
flies in vials with new food every 3-4 days. The same
cohorts of flies used in the climbing assay were daily
analyzed for survival.

Rotenone treatment

Cohorts of ten flies (five males and five females) were
placed in vials containing freshly prepared rehydrated
lyophilized food (Carolina Biological Supplies) contain-
ing rotenone (1 mM; Enzo, Farmingdale, NY). Flies were
reared at room temperature, their survival and loco-
motor activity assessed daily, as described above. Every
third day, the flies were transferred into a new vial with
freshly prepared rotenone-containing food. Because rote-
none is light- and temperature-sensitive, the flies were
reared at room temperature and in the dark.

Statistical analyses

All data were analyzed by One-Way ANOVA with a
Tukey’s post-hoc test, or by Two-way ANOVA followed
by a Bonferoni’s post-hoc test, as indicated.
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