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An intronic PICALM polymorphism, rs588076, is
associated with allelic expression of a PICALM
isoform
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Abstract

Background: Although genome wide studies have associated single nucleotide polymorphisms (SNP)s near
PICALM with Alzheimer’s disease (AD), the mechanism underlying this association is unclear. PICALM is involved in
clathrin-mediated endocytosis and modulates Aß clearance in vitro. Comparing allelic expression provides the
means to detect cis-acting regulatory polymorphisms. Thus, we evaluated whether PICALM showed allele expression
imbalance (AEI) and whether this imbalance was associated with the AD-associated polymorphism, rs3851179.

Results: We measured PICALM allelic expression in 42 human brain samples by using next-generation sequencing.
Overall, PICALM demonstrated equal allelic expression with no detectable influence by rs3851179. A single sample
demonstrated robust global PICALM allelic expression imbalance (AEI), i.e., each of the measured isoforms showed
AEI. Moreover, the PICALM isoform lacking exons 18 and 19 (D18-19 PICALM) showed significant AEI in a subset of
individuals. Sequencing these individuals and subsequent genotyping revealed that rs588076, located in PICALM
intron 17, was robustly associated with this imbalance in D18-19 PICALM allelic expression (p = 9.54 x 10−5). This
polymorphism has been associated previously with systolic blood pressure response to calcium channel blocking
agents. To evaluate whether this polymorphism was associated with AD, we genotyped 3269 individuals and
found that rs588076 was modestly associated with AD. However, when both the primary AD SNP rs3851179 was
added to the logistic regression model, only rs3851179 was significantly associated with AD.

Conclusions: PICALM expression shows no evidence of AEI associated with rs3851179. Robust global AEI was
detected in one sample, suggesting the existence of a rare SNP that strongly modulates PICALM expression. AEI
was detected for the D18-19 PICALM isoform, and rs588076 was associated with this AEI pattern. Conditional on
rs3851179, rs588076 was not associated with AD risk, suggesting that D18-19 PICALM is not critical in AD. In
summary, this analysis of PICALM allelic expression provides novel insights into the genetics of PICALM expression
and AD risk.
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Background
Phosphatidylinositol binding clathrin assembly protein
(PICALM) facilitates clathrin-mediated endocytosis.
PICALM binds phosphatidylinositol 4,5- bisphosphate
(PIP2), adaptor protein 2 (AP2) and clathrin to mediate
endocytic clathrin coated vesicle formation at the plasma
membrane. Although PICALM is ubiquitously expressed,
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PICALM expression is more pronounced in microvessels
[1,2]. Previous studies have shown PICALM co-localizes
with APP and modulates amyloid beta (Aß) generation
[3-5]. Accumulation of Aß deposits is a hallmark of
Alzheimer’s Disease (AD) pathology.
Genome wide association studies in multiple cohorts

have identified single nucleotide polymorphisms (SNP)s
near the PICALM gene as significantly associated with
AD risk [6-10]. Studies were first conducted with Cauca-
sian populations and then independently verified in sev-
eral although not all Asian populations [11-15]. These
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studies report that the rs3851179 A allele reduces AD
risk with an odds ratio of 0.88 [6]. This SNP is located
approximately 80 kb 5′ of PICALM.
Understanding how rs3851179 alters PICALM to im-

pact AD risk may lead to novel insights into AD mech-
anisms and potential treatments. Since rs3851179 is not
in linkage disequilibrium (LD) with a SNP that alters a
PICALM amino acid (r2 < 0.1), we hypothesize that
rs3851179 is associated with changes in mRNA tran-
scription or processing. Allelic expression imbalance
(AEI), which is an expression difference between allelic
transcripts within an individual, has been used to detect
cis-regulatory effects [16-20]. Here, we performed an
AEI analysis by comparing allelic expression through
the use of two exonic SNPs, rs76719109 and rs592297,
in AD and non-AD brain samples. These studies included
35 samples that were heterozygous for rs76719109 and 19
samples that were heterozygous for rs592297. While
PICALM expression did not show AEI overall, one indi-
vidual showed robust PICALM AEI, with an allelic ratio of
0.76. Additionally, significant AEI was detected for the
PICALM isoform lacking exons 18 and 19 (D18-19
PICALM). Sequencing and additional genotyping estab-
lished that rs588076 was robustly associated with this AEI
pattern. Interestingly, rs588076 has been associated with
blood pressure response to Ca++ channel blocking agents
[21]. We discuss these overall results in the context that
genetic regulation of PICALM isoforms relative to AD risk
is highly complex with further work necessary to elucidate
the mechanisms modulating genetic risk.

Results
To detect the presence of regulatory cis-acting SNPs in
human brain samples, we measured allelic ratios in
cDNA from reverse transcribed mRNA. Heterozygosity
for an exonic “reporter” SNP provides the means to
compare the expression of one allele with another allele
within an individual. Our criteria for reporter SNPs for
AEI analysis is that the SNPs are present in exons and
have a minor allele frequency (MAF) greater than 15%,
Figure 1 Rs76719109 and rs592297 AEI assays. a) For the exon 17 SNP
and a reverse primer was positioned in intron 17 (genomic samples) or exo
barcoded forward primer was positioned in exon 5, and a reverse primer w
(cDNA samples).
which allows for sufficient sample numbers for analysis.
Only two PICALM SNPs satisfied these criteria,
rs76719109 and rs592297 (Figure 1). Rs76719109 has a
MAF of 0.44 and resides within exon 17; PCR amplifi-
cation from exon 17–20 allowed us to measure AEI for
total PICALM as well as PICALM splice variants lack-
ing exon 18 or exons 18–19 (Figure 1a). Rs592297 has
a MAF of 0.20 and resides in exon 5. PCR amplification
from exon 5–6 produced a single PCR product for
cDNA (Figure 1b). The AEI assay was validated in two
ways. First, we tested the linearity of the assay by gener-
ating a cDNA standard curve consisting of five different
rs76719109 T:G ratios (Figure 2). Our input T:G ratios
ranged from 1:4 to 4:1. We found a robust linear rela-
tionship between input and observed T:G ratios. Sec-
ond, we applied our experimental approach to genomic
DNA (gDNA), which represented a positive control
with an expected “allelic” ratio of 1.0. Rs76719109 and
rs592297 showed gDNA ratios of 1.01 ± 0.03 (mean ±
SD, n = 35) and 0.96 ± 0.05 (mean ± SD, n = 19), respect-
ively (Figure 3). Hence, this AEI assay appears robust
for detecting and quantifying variations in allelic
expression.
To evaluate whether the AD-associated SNP rs3851179

was associated with unequal allelic PICALM expression, we
performed AEI analysis with rs76719109 and rs592297on a
total of 54 samples. Twelve of these 54 samples were het-
erozygous for both SNPs. Hence, we analyzed PICALM for
AEI in a total of 42 unique individual samples. This effort
analyzed 4.2 million sequences for rs76719109 and 1.4 mil-
lion sequences for rs592297. If rs3851179 modulated total
PICALM expression, we expected to see significant AEI in
individuals heterozygous for rs3851179, but not in individ-
uals homozygous for rs3851179. When we analyzed the re-
sults for the exon 17 SNP, rs76719109, significant AEI was
observed in only a single sample, termed AD40 (see below).
To evaluate whether a subtle difference in allelic expression
may be present and associated with rs3851179, we com-
pared the mean allelic expression between the rs3851179
homozygous and heterozygous groups. This approach did
rs76719109, a barcoded forward primer was positioned in exon 17,
n 20 (cDNA samples). b) For the exon 5 SNP rs592297 assay, a
as positioned in intron 5 (genomic samples) or exon 6



Figure 2 Linearity of allelic expression assay. Different proportions of rs76719109 T and G homozygous cDNA were mixed to test the linearity
of the AEI assay. The T:G ratios were 1:4, 1:2, 1:1, 2:1, and 4:1. An overall linear relationship was found (r2 = 0.99). The slope was 0.999, i.e., the assay
detected the T and G alleles with equal efficiency. The graphs are plotted log2 to avoid compression at the lower ratios and thereby better
visualize the data [22].

Parikh et al. Molecular Neurodegeneration 2014, 9:32 Page 3 of 10
http://www.molecularneurodegeneration.com/content/9/1/32
not discern a significant difference between the two groups,
i.e., the allelic ratios for rs3851179 homozygous and hetero-
zygous groups was 0.94 ± 0.08 (n = 17) and 0.97 ± 0.06 (n =
18), respectively (Figure 4a, p = 0.24, t-test). Hence,
rs3851179 did not appear associated with PICALM AEI.
To confirm this finding and extend the analysis to add-
itional samples, we analyzed allelic expression by using
the exon 5 SNP, rs592297. Significant AEI was not ob-
served in any sample, noting that the sample with the
significant AEI result from the rs76719109 analysis was
homozygous for rs592297 and not suitable for evalu-
ation. When the allelic ratios were analyzed by t-test to
Figure 3 Genomic DNA Allelic Ratios. a-b) The allelic ratio for the gDNA
showed significant AEI with each of the samples consistently near the expe
evaluate whether rs3851179 was associated with allelic
expression, the findings confirmed that rs3851179 was
not associated with robust AEI; the allelic ratios were
0.93 ± 0.05 (n = 4) for rs3851179 homozygotes and 1.01
± 0.07 (n = 15) for heterozygotes (Figure 4b, p = 0.06).
Hence, we found that the total PICALM allelic ratio for
each person was remarkably consistent with both re-
porter SNPs; rs3851179 is not associated with overall
allelic PICALM expression.
Interestingly, cDNA from the individual termed AD40

showed significant unequal allelic mRNA expression with
a T:G ratio of 0.76 (Figure 4a, Additional file 1: Table S1).
samples for rs76719109 and rs592297 is shown. None of the samples
cted 1:1 ratio (note that a 1.0 ratio is equal to 0 in log2).



Figure 4 Evaluation of total PICALM AEI with respect to rs3851179. a-b) Allelic PICALM expression was assessed by rs76719109 or rs592297.
Each individual sample was normalized to its gDNA ratio. Rs3861179 was not associated with significant AEI, i.e., only one sample (*) showed
significant AEI.
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This ratio is based on a total of four experiments that de-
tected a total of 68141 copies of the T allele and 88400
copies of the G allele. This AEI was not due to genomic
normalization as the genomic T:G ratio was 1.01. These
data are based upon the rs76719109 SNP because this in-
dividual was homozygous for rs592297. A similar result
was obtained when each of four separate replicates were
analyzed individually, i.e., when each replicate was ana-
lyzed individually, the T:G ratio was 0.73 ± 0.04 (mean ±
SD). Hence, significant AEI was observed in a single indi-
vidual among the 42 unique samples.
Having considered overall PICALM allelic expression,

we proceeded to apply this AEI analysis to PICALM iso-
forms. The exon 17 to exon 20 PCR amplicons captured
three different PICALM isoforms because exons 18 and
19 are variably spliced. These isoforms were termed full
length PICALM (contains exons 18–19), D18-PICALM
(lacked exon 18) or D18-19 PICALM (lacked both exons
18 and 19). We analyzed each of these isoforms for the
presence of AEI as a function of rs3851179 heterozygos-
ity. For the full length PICALM and D18-PICALM iso-
forms, significant AEI was observed only in the AD40
sample. To evaluate whether a subtle difference in allelic
expression may be present, we compared the allelic ex-
pression of the full length PICALM isoform between the
rs3851179 homozygous and heterozygous groups by
using a t-test. However, no difference was observed as
the average T:G ratio in the rs3851179 homozygous and
heterozygous groups was 0.93 ± 0.07 (n = 17) and 0.93 ±
0.06 (n = 18), respectively (Figure 5a, p = 0.81). Likewise,
for the D18-PICALM isoform, the rs3851179 homozy-
gous and heterozygous groups showed mean T:G ratios
of 0.95 ± 0.09 (n = 17) and 1.01 ± 0.12 (n = 18), respect-
ively (Figure 5b, p = value = 0.13). When we evaluated
the D18-19 PICALM isoform, significant AEI was detected
in multiple samples (Figure 5c). We analyzed these results
in two ways. First, we compared the frequency of samples
with significant AEI between the rs3851179 homozygous
and heterozygous individuals by using a Fisher’s exact test;
a significant difference between groups was not detected
(Figure 5c, p = 0.44). Second, we compared the mean T:G
ratio between rs3851179 homozygous and heterozygous
individuals by using a t-test. However, the rs3851179
homozygous and heterozygous individuals showed simi-
lar values that did not achieve significance, i.e., 1.19 ±
0.16 and 1.11 ± 0.22, respectively (p = 0.08). Hence,
rs3851179 heterozygosity was not associated with AEI
for these PICALM isoforms.
We considered the subset of samples that showed sig-

nificant AEI further. Among these, AD40 showed signifi-
cant AEI for each of the isoforms, with the D18, D18-19
and full length PICALM isoforms having allelic T:G ra-
tios of 0.77, 0.53 and 0.77, respectively. As noted above,
this finding is consistent with the hypothesis that a rare
SNP acts to alter global PICALM allelic expression in
this individual. Additionally, we noted that the D18-19
PICALM isoform showed significant AEI for multiple in-
dividuals (Figure 5c). In these eight individuals, the
rs76719109T allele was expressed more than the G allele
with the ratio ranging from 1.30 to 1.48. This is in con-
trast to AD40 where the T allele was expressed less than
G allele at a ratio of 0.53 (Table 1).
Since the D18-19 PICALM isoform but not overall

PICALM showed AEI in multiple samples, we hypothesized



Figure 5 Evaluation of PICALM isoform AEI with respect to rs3851179. The indicated PICALM isoforms were analyzed for AEI as a function of
rs3851179 (a-c) or rs588076 (d). Each allelic ratio was normalized to the sample’s gDNA ratio. a) The full length PICALM isoform contained exons
18–19 and showed equal allelic ratios, with a non-significant trend towards an increase in the G allele. b) D18-PICALM showed equal allelic ratios
and c) D18-19 PICALM showed significant unequal allelic ratios in 9 samples (*p < 0.05), d) The D18-19 PICALM AEI was associated with rs588076
heterozygosity. This pattern of significant AEI was not associated with sex, age or AD status (p > 0.05).

Table 1 D18-19 PICALM shows significant AEI in nine samples

Sample D18-19 T:G Counts Ratio (Normalized to genomic ratio) P-Value

C01 2337:1793 1.30 8.66 x 10−3

C11 13415:9508 1.47 7.91 x 10−34

C20 745:523 1.43 2.78 x 10−3

AD33 6136:4162 1.48 7.06 x 10−25

AD43 1743:1321 1.31 9.47 x 10−3

AD50 1529:1080 1.41 3.05 x 10−5

AD51 5530:4243 1.33 5.27 x 10−5

AD54 8893:6548 1.38 2.64 x 10−14

AD40 2203:4103 0.53 1.96 x 10−65

These D18-19 PICALM T:G allelic counts are the summation of three separate runs. AD samples are designated by an AD prefix while non-AD samples are
designated with a C prefix.
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that a local SNP influences this splice pattern. To identify
this SNP, we sequenced 6400 bp of genomic DNA between
exons 17–20 in C11 and AD33, the two individuals show-
ing the highest AEI ratio (Table 1). We identified several
SNPs that were heterozygous in these samples including
rs588076, rs645299, and rs618629. The MAF for these
SNPs in CEU range from 20-31% (Table 2). Additionally,
these SNPs are in strong LD with each other (Table 2).
Rs588076 and rs618629 reside in intron 17 while rs645299
is within intron 18. We genotyped all samples for rs588076.
The frequency of samples showing significant AEI was
significantly associated with rs588076 heterozygosity
(Figure 5d, p = 9.54 × 10−5, Fisher’s exact test). We
interpret these results as strongly suggesting that
rs588076, or a SNP in strong LD with rs588076, is
functional by modulating PICALM exon 18–19 splicing.
Since rs588076 is associated with D18-19 PICALM

AEI and rs3851179 has been robustly associated with
AD, we evaluated the extent that rs588076 is associated
with AD risk. We evaluated 1789 AD and 2529 non-AD
individuals from the Mayo Clinic cohort. Rs588076 was
significantly associated with AD risk when analyzed in a
logistic regression model (odds ratio = 0.8413, 95% confi-
dence intervals (0.7151-0.9898), p = 0.0372). However,
when rs3851179 was added to this logistic regression
model, only rs3851179 was significantly associated with
AD (Table 3). Haplotypic analysis confirmed that the
haplotype containing both rs588076 and rs3851179 report
the same association with AD as the haplotype containing
only rs3851179 (data not shown). Hence, rs588076 is asso-
ciated with D18-19 PICALM AEI but not AD risk.
Discussion
The primary findings of this report include (i) overall
PICALM expression shows no evidence of global AEI even
when parsed by AD-associated SNPs, (ii) robust global
AEI was detected in one sample, suggesting the existence
of a rare SNP that strongly modulates PICALM expres-
sion, and (iii) eight individuals show AEI for the D18-19
PICALM isoform that is associated with rs588076. How-
ever, rs588076 was not associated with AD risk when con-
sidered in a model that also included rs3851179. In
summary, analysis of allelic expression has proved a useful
tool for the evaluation of cis-acting regulatory polymor-
phisms and AD risk.
Table 2 Samples with robust AEI are heterozygous for three S

SNP MAF in CEU LD with rs3851179 LD w

rs588076 0.199 0.336

rs645299 0.306 0.665

rs618629 0.242 0.319

The samples C11 and AD33 were sequenced from exon 17 through exon 20. The sa
[23] with each other and have similar frequencies for the minor allele [24].
A consistent pattern of AEI in overall PICALM expres-
sion was not detected. This was unexpected since Xu
et al. reported consistent and robust PICALM AEI [22].
The reason for different results in these two studies is
unclear. The studies are similar in that both used
rs76719109 as a reporter SNP and similar although not
identical PCR primers. The studies differ in that Xu
et al. used an Asian population while this report studied
Caucasians. One explanation that would account for the
difference in the studies was the presence of a confound-
ing SNP in the Asian population in the genomic primer
sequence because much of the AEI in Xu et al. was due
to correction for imbalance in gDNA [22], although such
a SNP has not yet been reported. We previously re-
ported that the AD-associated SNP rs3851179 was asso-
ciated with a modest difference in PICALM expression
when analyzed relative to cell-type specific mRNAs; the
minor rs3851179A allele appeared to be expressed mod-
estly higher than the G allele [2]. A similar difference
was not observed here. One possible interpretation of
these findings is that rs3851179 or its proxy AD SNP
acts in a cell-type specific fashion that was discernible in
our analysis that included cell-type specific markers. The
current AEI study had smaller sample size because only
the samples that were heterozygous for rs76719019 or
rs592297 were suitable for analysis. However, this would
not be expected to affect the AEI results because they
rely upon an intra-individual analysis. We interpret these
results overall as suggesting that the AD-associated SNP,
or its functional proxy, acts in a cell-type specific fashion
to modulate PICALM expression. This cell-type specific
action was not detectable in this AEI study of mRNA
derived from multiple cell types.
The second major finding was that robust AEI was

detected for all PICALM isoforms in one individual, ar-
guing for the existence of a rare functional SNP that
strongly modulates total PICALM expression. For this
individual, the rs76719109G allele was consistently more
abundant than the T allele for each PICALM isoform. We
hypothesize that AD40 is unique among the 42 samples in
showing AEI because this sample is heterozygous for a
causal SNP. If this causal allele is present in the heterozy-
gous state in 1 of 42 people, this SNP has a minor allele
frequency of ~1.2%. Although current sequencing studies
of the PICALM promoter region have not yet identified
candidate functional SNPs for AEI in this sample, these
NPs

ith rs588076 LD with rs645299 LD with rs618629

- 0.539 0.911

0.539 - 0.525

0.911 0.525 -

mples were heterozygous for the indicated SNPs. These SNPs are in strong LD



Table 3 Logistic regression modeling of rs3851179 and/or rs588076 effect(s) on AD

Model SNP Odds Ratio Confidence Interval P value

rs588076 rs588076 0.8413 0.7151 - 0.9898 0.0372

rs3851179 rs3851179 0.7786 0.6819 - 0.8891 0.0002

rs3851179 + rs588076 rs3851179 0.7767 0.6604 - 0.9136 0.0023

rs3851179 + rs588076 rs588076 1.005 0.8238 - 1.227 0.959

In addition to the indicated SNPs, these models were adjusted for age of onset, APOE alleles, sex and contributing center.
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studies are on-going and a SNP that strongly modulates
PICALM expression would be expected to be a robust AD
risk factor.
The third major finding was that the D18-19 PICALM

isoform showed robust AEI. There was a strong skew to-
wards increased expression of the rs76719109T allele. Se-
quencing identified several candidate SNPs including
rs588076, which is 509 bp downstream of exon 17. This
SNP was found to be robustly associated with AEI for
D18-19 PICALM. There are three possible ways rs588076
could influence D18-19 PICALM splicing efficiency:
(i) rs588076 is in high LD with a functional SNP that
modulates splicing, (ii) rs588076 and other SNPs influence
D18-19 PICALM splicing in a cooperative manner, and/or
(iii) rs588076 directly influences splicing. Further studies
are necessary to discern among these possibilities.
The biological significance of the rs588076 association

with D18-19 PICALM is complex. D18-19 PICALM tran-
scripts account for 1-2% of total PICALM expression [2].
Thus rs588076 is significantly associated with AEI for a
PICALM isoform that is relatively rare in brain. Exons 18
and 19 encode a total of 27 amino acids that are part of
the carboxyl terminal region required for clathrin bind-
ing and endocytosis [25]. Hence, the protein encoded
by D18-19 PICALM is likely to have reduced function
[25]. However, rs588076 was not associated with AD
risk and did not enhance the logistic regression model
for the rs3851179 association with AD. This leads us to
conclude that the rs588076 and D18-19 PICALM iso-
form may be too rare in the brain to influence AD
pathogenesis. Interestingly, rs588076 was recently asso-
ciated with the blood pressure response to Ca++ channel
blocking agents [21]. Since rs588076 is associated only
with D18-19 PICALM, we speculate that this isoform
may be more abundant in other tissues and rs588076
actions upon D18-19 PICALM mediate this systolic
blood pressure phenotype.
Conclusion
In summary, analysis of allelic expression has shown that
compelling PICALM AEI was not observed in most brain
RNA samples. Strong global AEI was documented in one
sample, suggesting the existence of a rare PICALM regula-
tory SNP. A pattern of AEI was clearly discerned for the
D18-19 PICALM isoform and rs588076 was significantly
associated with this pattern. Rs588076 was not associated
with AD risk although this SNP has been associated with
a blood pressure-related phenotype. Allele-dependent ex-
pression studies may provide further insights into add-
itional AD-associated polymorphisms.
Methods
DNA and RNA extraction from human brain tissue
The RNA and DNA samples for this study were from de-
identified AD and non-AD human brain anterior cingulate
specimens provided by the University of Kentucky AD
Center Neuropathology Core and have been described pre-
viously [2,26,27]. The overall dataset included 30 AD sam-
ples (14 male, 16 female) and 30 non-AD samples (15
male, 15 female). The age at death for individuals that were
cognitively intact, i.e., non-AD, was 82 ± 8 years (mean ±
SD, n = 30) while age at death for AD individuals was 82 ±
6 (n = 30). The average post-mortem interval (PMI) for
non-AD individuals was 2.8 ± 0.9 hours (mean ± SD, n =
30) while the PMI for AD individuals was similar at 3.4 ±
0.6 hours (n = 30). For the rs76719109 AEI assay, a subset
of 35 samples were heterozygous for this SNP and included
18 non-AD (9 male, 9 female) and 17 AD (9 male, 8 fe-
male). For the rs592297 AEI assay, a total of 19 out of 60
samples were heterozygous, 13 non-AD (7 male, 6 female)
and 6 AD (3 male, 3 female). Preparation of gDNA, RNA
and cDNA was performed as described in previous studies
[2,26,27]. Although RNA integrity analyses were not per-
formed prior to reverse transcription, others have demon-
strated that for qPCR with short amplicons, normalized
expression differences are comparable between samples
with moderate RNA degradation and those with high in-
tegrity RNA [28]. We recognize that the absence of RNA
integrity analysis constitutes a caveat of this study.
Genotyping and sequencing
DNA samples were genotyped for rs3851179, rs76719109,
rs592297 and rs588076 by using unlabeled PCR primers
and two allele-specific TaqMan FAM and VIC dye-labeled
MGB probes (Pre-designed TaqMan SNP Genotyping
Assay, Applied Biosystems) on a real-time PCR machine
(Chromo4, MJ Research PTC-200).
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Allelic imbalance assay
Rs76719109 is in exon 17. For AEI analysis with
rs76719109, PICALM was amplified from exon 17 to
exon 20 for cDNA and exon 17 to intron 17 for gen-
omic DNA. For rs592297, PICALM was amplified from
exon 5 to exon 6 for cDNA and exon 5 to intron 5 for
genomic DNA. Exon numbering is according to PICALM-
005 ENST00000393346 for exons 1–16 and exons 17–21
correspond to the final five exons within PICALM-002
ENST00000532317 in Ensembl, since no single ENSEMBL
transcript includes each of the exons the we identify here
[29]. The PCR primers included Ion Torrent adapters, in-
dividual barcodes and DNA sequence flanking the region
of interest (Table 4). Each PCR reaction (50uL) contained
1x PCR buffer, 20 ng cDNA or 100 ng gDNA, 1uM of for-
ward and reverse primer, 0.1 mM dNTP and 0.5 Units
Taq (Platinium Taq, Invitrogen). Cycles consisted of pre-
incubation at 95°C for 2 minutes, followed by 28 cycles of
95°C for 15 s, 60°C for 30s and 72°C for 60s followed by
incubation at 75°C for 7 minutes. To acquire equal repre-
sentation from each sample, relative amounts of PCR
product were quantified by subjecting 10 uL of PCR prod-
uct to electrophoresis on 7.5% polyacrylamide gels and
SYBR gold staining relative to a Low DNA Mass Ladder
(Invitrogen). Approximately 2 ng of each individual’s
cDNA and gDNA PCR products were pooled, purified
using Agencourt AMPure XP and subjected to Ion Tor-
rent sequencing on a Ion Torrent 316 chip (Ion PGM
Sequencer).
Data extraction and analysis of allelic mRNA expression
Allelic counts were extracted from DNA sequences by
using Perlscript in a three-step fashion: (i) sequences
corresponding to each sample were separated based on
their barcode, (ii) gDNA and cDNA were then separated
based on the presence of intronic and exonic sequences,
respectively, and (iii) allele counts were obtained by
using sequences that bridged the SNP of interest.
Table 4 PCR primers for rs76719109 and rs592297 AEI assay

Assay DNA Primer Sense Primer

rs76719109 cDNA Sense 5′CCATC

cDNA Anti-sense 5′ CCTC

gDNA Sense 5′CCATC

gDNA Anti-sense 5′ CCTC

rs592297 cDNA Sense 5′CCATC

cDNA Anti-sense 5′ CCTC

gDNA Sense 5′CCATC

gDNA Anti-sense 5′ CCTC

“xxxxx” denotes 5 nucleic acid barcode, which is unique for each individual. Note th
Genomic DNA and cDNA were differentiated by the reverse primers.
Standard curve generation
One rs76719109 homozygous major (GG) and one homo-
zygous minor (TT) individual was selected based on simi-
lar qPCR copy numbers. Five dilutions were prepared
with different ratios of each individual’s cDNA: 1:4, 1:2,
1:1, 2:1, and 4:1. These samples were PCR amplified and
subjected to sequencing as described above.

Statistical analysis
Analysis of allelic counts was based upon the assump-
tion that transcript read counts follow a Poisson distri-
bution [30]. As such, each allele from the heterozygous
SNP was used to define two random variables. Follow-
ing the rs76719109 example of a G/T SNP, we denote
the pair of transcript counts as G ~ Poisson (λG) and
T ~ Poisson (λT). That is, G and T are Poisson-distributed
random variables with means λG and λT, respectively. It
can then be readily shown that for a given pair of realized
transcripts counts, G = g and T = t, the transcript count of
either allele is binomially distributed with success
probability equal to a ratio of component means. That

is, G G þ T ¼ g þ t e Bin g þ t; p ¼ λG
λGþλT

� ���� . Testing

for AEI then simplifies to an examination of the null hy-
pothesis that the pair of transcript counts comes from the
same distribution, i.e., that λG = λT which is equivalent to
testing H0 : p ¼ 1

2 G G þ T ¼ g þ t e Bin g þ t; 1
2

� �����
.

This null hypothesis agrees with the intuition that when
the total of transcript counts is known, the number gener-
ated from a specific allele is essentially a sequence of inde-
pendent, equally probable trials. Thus, rejection of this
null hypothesis corresponds to AEI.
Measuring transcripts from genomic DNA is one way

of correcting for the possibility of differential experimen-
tal error between allele transcript counts. Conceptually,
one could adapt methods for determining AEI by an ap-
propriate adjustment with the ratio of reads from gDNA
as these reads should theoretically come from the same
distribution regardless of AEI (Fardo et al., unpublished).
Sequence

TCATCCCTGCGTGTCTCCGACTCAGxxxxxTGGAGTCAACCAGGTGAAAA

TCTATGGGCAGTCGGTGATTTGGTTGCGTCATTACAGGA

TCATCCCTGCGTGTCTCCGACTCAGxxxxxTGGAGTCAACCAGGTGAAAA

TCTATGGGCAGTCGGTGATAGGAGCTTTTTCAACTCACCA

TCATCCCTGCGTGTCTCCGACTCAGxxxxxTGAACACAGAAAAACTCCTAAAAA

TCTATGGGCAGTCGGTGATGGCAGCATTTATTACCCCATT

TCATCCCTGCGTGTCTCCGACTCAGxxxxxTGAACACAGAAAAACTCCTAAAAA

TCTATGGGCAGTCGGTGATTCTGTGAAAACTTGAGGTTAAAAA

at gDNA and cDNA were amplified by the same barcoded forward primers.
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Alternatively, it can be assumed that one allele is derived
from a distribution with an inflated mean solely due to
experimental error (i.e., under the null hypothesis of no
AEI). In this case, we have that the means of the tran-
script reads satisfy either λG = (1 + δ)λT or (1 + δ)λG = λT.
Here, the probability parameter, p, for the count prob-
ability in the AEI test becomes 1þδ

2þδ or 1
2þδ, respectively.

For our gDNA data, we have a maximum 8.5% increase
of one allele over the other and chose to conservatively
assume a 20% mean increase (i.e., δ = 0.2). We then cal-
culate the AEI test p-value from the lesser-significant
test of H0 : p ¼ 1þδ

2þδ and p ¼ 1
2þδ.

Genotype association with AD risk
The Mayo Clinic dataset has been described previously
[31,32]. Briefly, the Mayo Clinic dataset contained 1789
cases and 2529 non-ADs collected from six centers from
the US and Europe as described [32]. Direct genotyping
of rs3851179 and rs588076 was performed using a Taq-
Man SNP genotyping assay in an ABI PRISM 7900HT
Sequence Detection System with 384-well block module
from Applied Biosystems (California, USA). First-pass
genotype cluster calling was analyzed using the SDS
software version 2.2.3 (Applied Biosystems, California,
USA). Variants passed Hardy-Weinburg (P > 0.05) and
minor allele frequencies are consistent with public data-
bases (EVS, HapMap, 1000G). Association testing for
rs3851179, with and without rs588076, was carried out
in PLINK [33] by using an additive logistic regression
model corrected for appropriate covariates; diagnosis
age, APOE 4, APOE 2, sex and contributing center.

Additional file

Additional file 1: Table S1. PICALM AEI analysis of AD40 shows
significant unequal rs76719109T to G allele ratios.
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