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Abstract

contactin-2, a GPl-anchored cell adhesion molecule.

with elevated BACET levels in the same samples.

Background: Although BACET is a major therapeutic target for Alzheimer’s disease (AD), potential side effects of
BACE1 inhibition are not well characterized. BACE1 cleaves over 60 putative substrates, however the majority
of these cleavages have not been characterized. Here we investigated BACE1-mediated cleavage of human

Results: Our initial protein sequence analysis showed that contactin-2 harbors a strong putative BACE1 cleavage
site close to its GPI membrane linker domain. When we overexpressed BACET in CHO cells stably transfected with
human contactin-2, we found increased release of soluble contactin-2 in the conditioned media. Conversely,
pharmacological inhibition of BACET in CHO cells expressing human contactin-2 and mouse primary neurons
decreased soluble contactin-2 secretion. The BACE1 cleavage site mutation T008MM/AA dramatically impaired
soluble contactin-2 release. We then asked whether contactin-2 release induced by BACET expression would
concomitantly decrease cell surface levels of contactin-2. Using immunofluorescence and surface-biotinylation
assays, we showed that BACET activity tightly regulates contactin-2 surface levels in CHO cells as well as in mouse
primary neurons. Finally, contactin-2 levels were decreased in Alzheimer’s disease brain samples correlating inversely

Conclusion: Our results clearly demonstrate that mouse and human contactin-2 are physiological substrates for
BACE1. BACET-mediated contactin-2 cleavage tightly regulates the surface expression of contactin-2 in neuronal
cells. Given the role of contactin-2 in cell adhesion, neurite outgrowth and axon guidance, our data suggest that
BACE1 may play an important role in these physiological processes by regulating contactin-2 surface levels.

Introduction
Alzheimer’s disease (AD) is the most common neurode-
generative disease that affects millions of people world-
wide. Studies strongly suggest that the accumulation of
toxic amyloid -p peptides (AP) is associated with synaptic
dysfunction and neuronal loss in AD [1]. AP peptides are
generated from sequential cleavages of the amyloid B
precursor protein (APP), which are mediated by the p-site
APP cleaving enzyme 1 (BACE1) and Presenilin/y-secre-
tase [2-4]. Therefore, BACE1 and y-secretase represent
two major therapeutic targets for prevention and treat-
ment of AD.

BACEL, also known as memapsin 2 and Asp 2, is a
type I transmembrane aspartyl protease that is highly
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expressed in neuronal tissues [5,6]. Besides generating
pathogenic AB, BACE1 also plays crucial roles in numer-
ous physiological processes including neuronal activity,
myelination, axonal guidance, presynaptic activity and
cognitive behavior in mice [7-14]. These physiological
BACE] functions cast a doubt on the safety of BACE1
inhibition therapy currently being developed to block Ap
generation in AD patients. Currently more than 60
BACE1 substrates have been reported in in vitro and
in vivo conditions [15-21]. Therefore characterizing
BACE1-mediated cleavage for each substrate may not only
contribute to our understanding of how BACEL regulates
crucial physiological processes but also aid in the pre-
vention of potential side effects deriving from BACE1
inhibition therapy.

Contactin-2 (axonin-1 or transient axonal glycoprotein-
1 (TAG-1)) is a cell adhesion molecule that belongs to im-
munoglobulin super family [22,23]. Contactin-2 is highly
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expressed at the axon growth cone and plays an important
role in regulating axon guidance and path finding [24,25].
Studies from knockout mice revealed that contactin-2 is
also crucial for normal learning and memory functions
[26]. While the majority of currently reported BACE1 sub-
strates are type I membrane proteins with transmembrane
domains, contactin-2 belongs to the carboxy-terminal
glycan phosphatidyl inositol (GPI)-anchored protein
family that requires covalent linkage of GPI domains for
binding to the plasma membrane. Interestingly, two recent
unbiased secretome analyses suggested that BACEI1
activity regulates the release of contactin-2 in neurons but
the BACE1-mediated contactin-2 cleavage has not been
fully characterized [19,20]. Therefore we decided to
characterize BACE1-mediated cleavage of contactin-2 in
cellular and neuronal models and explore whether BACE1
cleavage regulates surface expression of contactin-2, po-
tentially affecting the cell adhesion function of the protein.

Materials and methods

Antibodies and reagents

Anti-human contactin-2 (MAB-1714) and anti-mouse
contactin-2 (AF4439) antibodies were purchased from
R&D Systems (Minneapolis, USA). The rabbit monoclonal
anti-human contactin-2 antibody was from Abcam
(Cambridge, USA) while rabbit monoclonal BACE1
antibody was from Cell Signaling Inc. (Boston, USA).
Anti-mouse V5 antibody was from Life Technologies
(Grand Island, USA). Rabbit anti-APP was described
earlier [27]. sAPP (22C11), N-cadherin and NrCAM anti-
bodies were from EMD Millipore (Billerica, USA). BACE1
Inhibitor IV was also purchased from EMD Millipore.

Plasmid construction

Human contactin-2  plasmid (MGC:157722) was
obtained from Harvard Plasmid DNA Resource Core
(Harvard Medical School, Boston). Contactin-2 ¢cDNA
coding region was amplified using the following primers:
forward, CACCATGGGGACAGCCACCAGG AGG; re-
verse, TCAGAGCTCCAGGGAGCCTATGAGG. The
amplified fragments were subcloned into pcDNA6.1
vector (directed TOPO system, Life Technologies). For
generation of the soluble form of contactin-2, a V5-tag
was C-terminally added to inactivate the GPI-anchor
domain. The putative BACE1 cleavage site was mutated in
the contactin-2 ¢cDNA construct (CNTN2-MM1008AA)
with the help of Quick Change site-directed mutagenesis
kit from Agilent Technologies (Santa Clara, USA) accord-
ing to the manufacturer’s protocol using the following
primers: forward, GAGGAATGGAGGCACAAGCGCGG
CGGTGGAGAACATGGCAGTC; reverse, GACTGCC
ATGTTCTCCACCGCCGCGCTTGTGCCTCCATTC
CTC. All the constructs were sequenced and verified at
the MGH DNA sequencing core facility (Boston, USA).
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Generation of contactin-2 stable cell lines

Single cell stable lines were generated for both GPI-
anchored contactin-2 and soluble contactin-2 (V5-tagged)
in CHO cells. Briefly, 4 pg of GPI-anchored contactin-2
and soluble contactin-2 cDNA were transfected in CHO
cells with the help of Effectene transfection reagent
(Qiagen, Valencia, USA) according to the manufacture’s
protocol. 48 h after transfection, cells were trypsinized
and replated in the presence of 10 pg/pl of Blasticidin
selection marker. After 2 weeks of selection, Blasticidin
resistant cells were further plated in serial dilutions in a
96-well plate in order to get single cell colonies. Later,
different single cell clones were picked and analyzed by
Western blotting for the optimal expression of contactin-
2 with the help of specific antibodies.

Primary neuronal cultures

Primary neuronal cultures were prepared from 16-day
old pregnant female mice (CD-1). Mice were purchased
from Charles River Laboratories, Cambridge, and the
animal protocol was approved by the MGH Institutional
Animal Committee. In brief, hippocampi and frontal
cortices were dissected and isolated from pups at embry-
onic day 16 (E-16). Dissected tissue was further tritu-
rated using fine pasture pipette and later plated on poly-
D-lysine/laminin coated 6-well tissue culture plate using
Neurobasal media containing 2% B-27 serum supple-
ment (Life Technologies). Cultures were maintained in a
humidified environment at 37°C with 5% CO, and 50%
of the media were replaced every 3 day.

Lentiviral generation and infection

BACELI and the control mCherry lentiviral particles were
generated at the MGH Vector Core facility (Charlestown,
USA). Contactin-2 expressing CHO cells at 40% con-
fluency were infected with 1 x 10° lentiviral particles. 24 h
after infection, media was replaced and the cells were
allowed to grow for a total of 5 days before extraction. In
case of primary neurons, cultures were infected at DIV5
with 1x 10° lentiviral particles. In order to reduce the
lentivirus-mediated toxicity, 50% of the culture media was
replaced 12 h after infection. Cultures were allowed to
grow for 6 additional days after infection.

BACET1 inhibitor treatment

CHO cells stably expressing GPI-anchored contactin-2
were plated on 60 mm tissue culture plate and treated
with either 4 pM of BACELI Inhibitor IV (EMD Millipore)
or the same volume of DMSO control vehicles. The
treated cells were allowed to grow for 48 h and the media
was replaced with fresh media containing BACE1 Inhibi-
tor IV. 48 h after conditioning, both the media and the
cells were collected, processed and analyzed by Western
blot. For primary neuronal cultures, the neurons were



Gautam et al. Molecular Neurodegeneration 2014, 9:4
http://www.molecularneurodegeneration.com/content/9/1/4

treated with 1 uM BACE1 Inhibitor IV for 48 h, replaced
with fresh media containing 1 pM of BACEL1 Inhibitor IV,
and then incubated for additional 48 h before collecting
the media and the cells.

Western blot analysis

Cells were lysed in 1X GTIP buffer containing 10 mM
Tris-HCI (pH 6.8), 2 mM EDTA (pH 8.0), 150 mM
NaCl, 1% Triton X-100, 0.25% Nonidet P-40, and a pro-
tease inhibitor cocktail (Roche Molecular Biochemicals,
Indianapolis, IN, USA). The lysates were centrifuged at
16,000 x g in order to remove insoluble materials and
the protein concentration was measured using a BCA
protein assay kit (Pierce Biotechnology, Rockford, USA).
25-75 pg protein samples were separated either on 3-8%
Tris-Acetate gels, 4-12% gradient Bis-Tris gels, or 12%
Bis-Tris gels (Life Technologies) and transferred on
PVDF membrane. Blots were then blocked either with
5% skimmed milk or with 5% BSA (Sigma, St. Louis,
MO, USA) for overnight at 4°C. Primary antibodies were
used at the following dilutions: human contactin-2
(1:200), mouse contactin-2 (1:200), anti-V5 (1:3000),
anti-APP  C-66 (1:1000), anti-BACE1 (1:1000), anti-
sAPPB (1:200), anti-N-cadherin (1:1000), anti-NrCAM
(1:1000) and anti-GAPDH (1:2000). Blots were devel-
oped by chemiluminescence using Biomax light film
(Kodak, Rochester, USA) or Versa Doc imaging system
and quantified using Quantity One software (Biorad).

Immunofluorescence analysis

CHO cells stably expressing GPI-anchored contactin-2
were plated on glass coverslips in a 6-well tissue culture
plate. Cells were treated with 4 uM BACEL Inhibitor IV
or DMSO for 48 h, fixed and then stained with anti-hu-
man contactin-2 antibody (1:200) without permeabi-
lization for overnight at 4°C. After incubating with Alexa
Fluor488-conjugated secondary antibody, cover slips
were mounted on the glass slides with the help of
mounting media containing DAPI (Life Technologies).
Images were taken on Olympus IX 70 microscope with
the same exposure settings and later processed by IPLab
software.

Cell surface biotinylation

Cell surface biotinylation experiments were performed
on primary neuronal cultures at day 15 (DIV15).
Cultures grown in 6-well plate were washed three times
with ice cold Hank’s balanced salt solution (HBSS) and
incubated in dark for 1 h with 2 ml of ice cold HBSS
containing 0.5 mg/mL Sulfo-NHS-Biotin (Pierce). Five-
minute incubation with 100 uM lysine solution was used
to quench the reaction followed by three washes with
cold HBSS. Cells were then extracted directly in an
extraction buffer containing 10 mM Tris-HCl (pH 6.8),
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2 mM EDTA (pH 8.0), 150 mM NaCl, 1% Triton X-100,
0.5% Sodium Deoxycolate, 0.2% SDS, 1 mM PMSE, 20
uM ALLN and a protease inhibitor cocktail (Roche
Molecular Biochemicals). The insoluble fractions were
removed by centrifugation at 16,000 x g and the protein
concentrations were determined using the BCA protein
assay kit (Pierce). 200-600 pg of protein was immuno-
precipitated using NeutrAvidin beads (Pierce) overnight
at 4°C. Next day, samples were washed 3 times with the
extraction buffer, eluted with the LDS sample loading
buffer (Life Technologies) supplemented with 2% (v/v)
B-mercaptoethanol and separated on 4-12% Bis Tris-
Acetate NuPage gel (Life Technologies) followed by
Western blot analysis using various primary antibodies.

Analysis of AD brain samples

Brain samples from 9 AD and 8 Non-AD patients (age-
matched, temporal lobe region) were obtained from Dr.
Yong Shen (Roskamp Institute, Sarasota, FL). The same
set of samples were previously used to analyze altered
sodium channel metabolism [16]. Frozen tissue samples
were lysed with extraction buffer containing 10 mM
Tris-HCI (pH 6.8), 1 mM EDTA, 150 mM NaCl, 0.25%
Nonidet P-40, 1% Triton X-100, 0.2% SDS and a prote-
ase inhibitor cocktail (Roche Molecular Biochemicals).
75 pg of protein was resolved on 12% Bis/Tris NuPage
gels or 3-8% Tris/Acetate gels. BACEL levels were deter-
mined in our previous study [16] while amyloid plaque
density information for individual samples were pro-
vided by Dr. Shen’s laboratory.

Results and discussion

Contactin-2 is a substrate for BACE1

To investigate the physiological functions mediated by
BACE1, we have been identifying novel substrate pro-
teins other than APP [10,16,21]. Toward this goal, we
used an unbiased bioinformatics approach and identified
a group of candidate substrate proteins that contain pu-
tative BACEL cleavage sites close to the cell membrane.
Interestingly, both human and mouse contactin-2 harbor
a strong putative BACE1 cleavage site in their extracellu-
lar NH,-terminal domain 4 amino acids upstream from
its GPI membrane linker (Figure 1A). Two previous
reports have also suggested that mouse contactin-2 may
be a BACEL substrate [19,20].

To test whether contactin-2 is a BACE1 substrate in
cells, we first generated expression constructs with full-
length human contactin-2 (Figure 1B, GPI-anchored
CNTN?2) or secreted contactin-2 where the GPI-anchor
domain was inactivated by the addition of a V5-epitope
tag (Figure 1B, sCNTN2). These constructs were trans-
fected into Chinese Hamster Ovary (CHO) cells and stable
CHO cell clones with high expression of GPI-anchored
CNTN2 or sCNTN2, were selected for the experiments
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Figure 1 BACE1 cleaves contactin-2 close to its GPI domain. A) Schematic representation of partial amino acid sequence of contactin-2
indicating putative BACE1 cleavage site. B) Graphic representation of GPl-anchored and soluble contactin-2 proteins that were used in this study.
Q) Lentiviral-mediated overexpression of BACE1 increased contactin-2 and sAPP shedding in CHO cells stably expressing GPl-anchored human
contactin-2 (CNTN2). (D) Release of soluble contactin-2 (SCNTN2) was not changed by BACET overexpression. E and F) Quantitative analysis of
the secreted contactin-2 levels in C) and D), respectively (Student t test; ¥, p < 0.05; n =3 for each condition).

(Additional file 1: Figure S1). As expected, Western blot
analysis of the conditioned media using a human
contactin-2 antibody revealed a strong increase in the
secreted form of contactin-2 in CHO cells with sSCNTN2
due to the lack of active GPI-anchor domain (Additional
file 1: Figure S1A). Interestingly, we also found a small but
consistent release of contactin-2 into cell culture media of
CHO cells with GPI-anchored contactin-2 (Additional
file 1: Figure S1B). To explore whether BACEIL-
mediated cleavage regulates contactin-2 release into
cell culture media, we coexpressed human BACE1 in
CHO cells with contactin-2 and analyzed contactin-2
levels in total cell lysates and conditioned cell culture
media (Figure 1C and D). BACEl overexpression
increased secreted contactin-2 levels by ~2 fold in CHO
cells with GPI-anchored contactin-2 (Figure 1C and E). As
a negative control, we co-expressed BACE1 in CHO cells
expressing SCN'TN2 with the inactive GPI anchor domain
(Figure 1D and F). As expected, BACE1 expression did
not induce significant changes in soluble contactin-2
levels both in the conditioned media and in the total cell
lysate (Figure 1D and F). These data confirm that BACE1

cleaves GPI-anchored contactin-2 and therefore regulates
the release of contactin-2 ectodomain.

Endogenous BACE1 activity regulates contactin-2
cleavage

As BACE1 enhances GPI-anchored contactin-2 shed-
ding, we next investigated whether contactin-2 cleavage
is also regulated by endogenous BACEIL activity. CHO
cells expressing GPI-anchored contactin-2 were treated
with BACE1 Inhibitor IV for 4 days and changes in
contactin-2 levels were assessed by Western blot ana-
lysis. As shown in Figure 2A and B, pharmacological
inhibition of endogenous BACE1l activity decreased
contactin-2 levels by 49% in the conditioned media as
compared to the DMSO-treated control cells. We also
found that BACE1 Inhibitor treatment dramatically in-
creased total contactin-2 levels in cell lysates (Figure 2A).
To confirm that BACE1 Inhibitor treatment blocked
endogenous BACE1 activity, we also showed significant
reduction in total sAPP levels in the conditioned media
(Figure 2A). Finally, contactin-2 cell surface levels
were assessed under non-permeabilizing conditions by
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Figure 2 BACE1 inhibition reduces contactin-2 shedding. A) Western blot showing a sharp decrease in contactin-2 levels in CHO(CNTN2)
cells treated with BACE1 Inhibitor IV. B) Quantitative analysis of the secreted contactin-2 levels in A) (Student t test; *, p < 0.05; n = 3 for each
condition). €) Confocal microscopy images of cell surface contactin-2 levels in CHO cells expressing CNTN2. BACET Inhibitor IV induced a strong
increase in contactin-2 surface levels (green). Nuclear staining with DAPI is shown in blue. Images are taken at identical settings.

immunofluorescence analysis with contactin-2 anti-
body against extracellular domains. As shown in
Figure 2C, inhibition of endogenous BACE1 activity
by BACE1 Inhibitor IV treatment markedly reduced
contactin-2 shedding and thus significant increased
contactin-2 cell surface levels as compared to the control
one. These data clearly demonstrate that endogenous
BACEL activity regulates contactin-2 cleavage, cell surface
contactin-2 levels and release of contactin-2 into the cell
culture media.

To test whether BACE1 regulates the cleavage of
endogenous contactin-2, we next studied contactin-2
shedding in mouse cortical neuronal cultures. Similarly
to CHO cells with GPI-anchored contactin-2, we found
that BACEL inhibitor treatment decreased secreted
contactin-2 levels in the conditioned media as compared
to DMSO-treated controls (Figure 3A). Quantitation
showed an approximately 50% decrease in secreted
contactin-2 levels (Figure 3B). Inhibition of endogenous
BACEL1 activity was also verified by the decreased total
sAPP levels as shown in Figure 3B. Our results
demonstrate that endogenous contactin-2 is a substrate
for BACE1 and undergoes BACEl-dependent cleavage
both in CHO cells and primary neuronal cultures.

BACE1 cleaves contactin-2 at Met1008-Met1009

Previously, we have shown that the BACE1 cleavage site
mutation 147LM/VI abolished cleavage of the sodium
channel B2 subunit [28]. Similarly, we now introduced
two mutations, 1008-1009MM/AA, into the putative
BACET1 cleavage site in contactin-2 (Figures 1A and 4A)
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Figure 3 BACET1 inhibition also decreases release of endogenous
neuronal contactin-2. A) Western blot analysis of mouse primary
neuronal cultures treated with 1 uM BACE 1 Inhibitor IV showed a
significant decrease in contactin-2 and sAPP levels in the conditioned
media. B) Quantitative analysis of secreted contactin-2 levels in A)
(Student t test; **, p < 0.01; n = 3 for each condition).
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and tested whether these mutations specifically block
contactin-2 shedding. To investigate whether the 1008-
1009MM/AA mutations affect BACE1-mediated contac-
tin-2 cleavage, we generated CHO cells co-expressing
BACE1l and wild-type contactin-2 (CNTN2-WT) or
mutant contactin-2 (CNTN2-MM1008AA) and analyzed
secreted contactin-2 levels in the conditioned media. We
found that soluble contactin-2 levels were significantly
decreased in CHO cells expressing CNTN2-MM1008AA
as compared to CNTN2-WT control cells (Figure 4B).
Quantitative analysis showed that soluble contactin-2
levels were decreased by 78% in CNTN2-MMI1008AA
cells as compared to wild type control cells (Figure 4C).
Together, our data indicate that BACE1-mediated con-
tactin-2 cleavage site is at 1008Met-1009Met and that
this cleavage plays a major role in regulating contactin-2
release in cells.

BACET1 regulates cell surface contactin-2 levels in mouse
primary neurons

We next used cell surface biotinylation of primary mouse
neurons to ask whether BACE1 also regulates surface
expression of contactin-2 under physiological conditions,
in addition to its shedding. To increase BACE1 activity,
we infected primary neurons with human BACE1 lenti-
viral vectors and incubated the cultures for 6 days. BACE1
overexpression dramatically decreased cell surface levels
of contactin-2 while it did not significantly affect surface
levels of N-cadherin, a type I membrane protein that is

not cleaved by BACE1 (Figure 5A and B). Conversely,
when mouse primary neurons were treated with BACE1
Inhibitor IV and subjected to surface biotinylation, we
observed a strong increase in contactin-2 cell surface
levels (Figure 5C and D). Surface levels of APP were
concomitantly increased in these neurons (Figure 5C). All
together, these data show that BACE1 activity modulates
contactin-2 cleavage and thus regulates its surface levels
in mouse primary neurons.

Decreased contactin-2 levels in AD brain samples

Studies have shown that BACE1 activity is significantly
increased in late-onset AD brains [29-31]. Previously, we
reported that cleavage of the voltage-gated sodium chan-
nel B2 subunit was increased in AD brain samples,
closely correlating with the elevated BACEL levels [16].
Therefore, we next asked whether contactin-2 cleavage
was also increased in the same AD brain sets with
elevated BACEL levels. Unlike APP or the sodium chan-
nel 2 subunit, contactin-2 is anchored to the membrane
via a GPI domain. Thus, its shedding cannot be assessed
by analyzing the levels of its membrane-anchored C-
terminal fragments. Instead, we tested whether total
levels of contactin-2 are decreased in our AD samples
similarly to BACE1l overexpression in our cellular
models (Figures 1 and 5). Western blot analysis revealed
that contactin-2 levels were generally decreased in AD
brain samples as compared to control age-matched
samples (Figure 6A). Quantitative analysis showed a
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significant ~50% decrease in contactin-2 in AD brain
samples (Figure 6B; p<0.01; n=9 for AD, 8 for non-
AD). More importantly, decreased contactin-2 levels
were closely correlated with BACE1 levels (Figure 6C;
p=0.032; n=17) and even more closely with amyloid
plaque density (Figure 6D; p=0.0064; n=17). The
close correlation of contactin-2 levels with amyloid
plaque density may also stem from amyloid-induced
elevated presynaptic BACE1 in AD brains [32]. Together,
our results indicate that elevated BACEL activity increases
contactin-2 cleavage in human brains with high
BACET1 levels.

In this study, we showed that BACE1 activity tightly
regulates cell surface contactin-2 levels in CHO cells
and cultured mouse primary neurons by selectively
cleaving cell surface contactin-2. Recent studies indi-
cated that BACEl-null neurons display axon guidance
defects but the underlying molecular mechanisms are
not fully elucidated [12-14]. While the biological activity
of the released contactin-2 remains unknown, lack of
proper BACEl-mediated cleavage of surface neural
adhesion molecules such as contactin-2 may provide an
explanation for axon guidance defects observed in
BACE1l-null mice [13,20]. Since contactin-2 regulates
axon guidance through homophilic and heterophilic

interactions with other neural adhesion molecules
[25,26,33-38], abnormal accumulation of surface contac-
tin-2 by BACE1 knock-down may interfere the proper
axon guidance iz vivo. In mice, premature early over-
expression of contactin-1 (F3/contactin) leads to the
reduction in the cerebellar size, granule cell numbers
and Purkinje cell maturation [39], which suggests the
importance of the precise contactin expression in early
brain development. Similarly, Hitt et al. recently
proposed that decreased BACEl-mediated shedding of
CHL1 may also contribute to axon guidance deficits in
BACE1-null neurons [13]. Our findings, together with
those of Hitt et al, suggest that lack of proper BACE1-
mediated shedding of neural adhesion molecules may
produce the final phenotype of axon guidance deficits
found in BACE1-null neurons. It will be interesting to
identify all major neural adhesion molecules mediat-
ing the effect of BACE1 on axonal guidance in neural
tissues.

Our data in Figure 6 also suggest that elevated BACE1
in brains of AD patients may also contribute to AD
pathogenesis by decreasing contactin-2 levels and possibly
its surface expression. Mice lacking contactin-2 show
deficits in neuronal migration (for a subset of cerebella
neurons) [40], neurogenesis [41], learning and memory
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Figure 6 Contactin-2 levels are decreased in AD brain samples inversely correlating with BACE1 levels or f-amyloid plaques. A)
Western blot analysis showed that contactin-2 levels were decreased in AD brain samples as compared to age-matched controls. B) Quantitative
analysis of contactin-2 levels in A) (**, p <0.01, Student's t test; n =9 for AD, 8 for non-AD). Contactin-2 levels were inversely correlated with
BACET levels (C, p=0.032, Person’s correlation test; n=17) or amyloid plaque densities (D, p =0.0064) in these samples.

[26] and ion channel clustering [26,42]. Therefore,
decreased contactin-2 levels in brains of AD patients may
contribute the neuronal deficits through multiple me-
chanisms. However, further studies will be required to
fully characterize the functional consequences of BACE1-
mediated contactin-2 cleavage in AD pathogenesis as well
as its potential side-effects during BACEL inhibitor
therapies currently in clinical trials.

While we were investigating human contactin-2
cleavage in our cellular model systems, two unbiased
secretome analyses have been published showing that
TAG-1 (mouse contactin-2) ectodomain release is regu-
lated by BACE1L activity in mouse primary neuronal
cultures [19,20]. Kuhn et al. also confirmed that TAG-1
ectodomain release was significantly decreased in brains
of BACE1-null mice [19]. Consistent with these findings,
we confirmed that BACE1 activity tightly regulates the
release of contactin-2 in mouse primary neuronal cul-
tures (Figure 3). Moreover, we characterized human
contactin-2 cleavage by BACEl and identified the
cleavage site for the first time (Figures 1, 2 and 4). Our
surface biotinylation studies also demonstrated that
BACET] activity tightly regulates cell surface contactin-2
levels in cultured mouse primary neurons (Figure 5).

Together, our data show that human and mouse
contactin-2 are endogenous substrates for BACE1 and
that BACE1l-mediated cleavage modulates the surface
expression of contactin-2.

Additional file

Additional file 1: Figure S1. Expression of sSCNTN2 and GPl-anchored
CNTN2 in CHO cells. Western blot analysis showed the overexpressed
SCNTN2 is mostly secreted into the conditioned media (A) while
GPl-anchored CNTN2 is mostly in the total lysate fraction (B).
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