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The amyloid cascade hypothesis has been the prevailing hypothesis in Alzheimer's Disease research, although the final
and most wanted proof i.e. fully successful anti-amyloid clinical trials in patients, is still lacking. This may require a better
in depth understanding of the cascade. Particularly, the exact toxic forms of A3 and Tau, the molecular link between
them and their respective contributions to the disease process need to be identified in detail. Although the lack of final
proof has raised substantial criticism on the hypothesis per se, accumulating experimental evidence in in vitro
models, in vivo models and from biomarkers analysis in patients supports the amyloid cascade and particularly
AB-induced Tau-pathology, which is the focus of this review. We here discuss available models that recapitulate
AB-induced Tau-pathology and review some potential underlying mechanisms. The availability and diversity of
these models that mimic the amyloid cascade partially or more complete, provide tools to study remaining questions,
which are crucial for development of therapeutic strategies for Alzheimer's Disease.
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The amyloid cascade hypothesis and anti-Ap
directed therapies

Brains of Alzheimer’s Disease (AD) patients are char-
acterized by the presence of amyloid plaques and
neurofibrillary tangles (NFTs) as diagnostic hallmarks,
in addition to reactive microgliosis and astrogliosis,
synaptic and neuronal loss, and a marked brain atro-
phy [1-5]. Identification of mutations in amyloid pre-
cursor protein (APP) and presenilin (PS1/2) that are
autosomal dominantly linked to early onset familial
AD [6,7], represented major milestones in AD re-
search. The histopathological similarity between spor-
adic and early familial cases was taken as evidence for
a common etiology of the disease. Because in vitro and
in vivo data indicated that Early Onset Familial Alzheimer’s
Disease (EOFAD) mutations give rise to the generation of
more (-amyloid (AP) peptides or more amyloidogenic
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species, their accumulation was postulated to be the
cause of the disease process. Hence, it was postulated
that accumulation of more amyloidogenic peptides re-
sults in a cascade of events leading to increased inflam-
mation, Tau pathology, synaptic and neuronal loss,
ultimately responsible for the clinical symptoms of AD
[1]. In contrast, exonic and intronic mutations in
MAPT, the gene encoding Tau, are associated with neu-
rodegenerative diseases, but not with AD [8,9], and
hence do not result in amyloid pathology.
Accumulating evidence for a causal role of amyloid
peptides in AD etiology resulted in a quest for anti-
amyloid directed targets, which was particularly pur-
sued preclinically in APP and APP/PS1 overexpressing
transgenic mice. These models develop robust amyloid
pathology, gliosis and synaptic and behavioral deficits —
including cognitive deficits —, parameters that were
used as read-outs for successful preclinical trials. Iden-
tification of alpha-secretase (ADAMI10 [10], TACE),
beta-secretase (BACEL [11]) and gamma-secretase (as a
complex containing aphl, pen2, nicastrin, PS1 [12,13])
and the analysis of their potential as therapeutic targets
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in preclinical models [14], prompted straightforward
small molecule-based approaches. In addition, other
non-secretase directed approaches were developed in-
cluding the more unexpected, atypical approach of ac-
tive and passive immunization against Af [15,16].

The amyloid cascade hypothesis: criticism raised
by lack of successful clinical trials fueled interest
in Tau-directed therapies

However, anti-Af directed clinical trials in AD patients
have been incompletely satisfying or disappointing either
by lack of amyloid lowering effects or by disappointing
outcomes [17] including following immunization, ie.
marked removal of amyloid plaques without halting/
slowing disease progression. Hence these outcomes indi-
cated (i) technical issues, (ii) the preventive (‘early’) ra-
ther than curative (‘late’) potential of anti-amyloid
therapies, and (iii) revealed the necessity of multi-target
therapies combining anti-amyloid with therapies aiming
at Tau — as a “late target” — able to halt the execution of
the pathogenetic cascade. Most importantly clinical trials
aiming at amyloid plaques highlighted the lack of in
depth understanding of (i) the molecular identity of the
toxic AP (and Tau) forms, (ii) the mechanisms linking
both diagnostic pathologies (amyloid and Tau) — and
eventually associated pathological features including in-
flammation, synaptic loss, brain atrophy and (iii) the re-
spective contributions of both pathological proteins to
the etiology of AD. Indeed, arising insights encompassed
that either not the or not all toxic forms of AP were re-
moved, or that administration of the vaccine occurred
too late in the disease process, after initiation of a patho-
genetic cascade by AP, which can be self-propagating
and Tau-driven. Alternatively, independent pathogenetic
roles of AP and Tau were invoked [18]. The interest in
Tau as a “late target” for combined therapy — as crucial
executor of the degenerative processes — [9] is substanti-
ated by the fact that NFT load and spreading closely cor-
relates with the severity and progression of the disease.
Moreover, Tau pathology is associated with a growing
list of neurodegenerative diseases referred to as “Tauopa-
thies”. And most importantly, exonic as well as intronic
mutations in the Tau gene (MAPT) linked to these
Tauopathies [8,9], demonstrate that Tau is causally
linked to neurodegenerative processes. Finally, accumu-
lating evidence indicates that Tau-pathology can spread
in a prion-like fashion to different brain regions: the
spreading of misfolding of Tau to functionally connected
brain regions [19-25], points towards a self-propagating
“prion-like” effect — eventually following initiation of the
cascade by AP. These data position Tau as an important
therapeutic target in Tauopathies but also in AD [9], and
highlight the need to understand its exact pathological
role. Most importantly, the outcome of these trials
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highlighted the need to understand the relation between
AP and Tau and their respective contributions to the
pathogenetic process.

AB-induced Tau-pathology: experimental support
for AB-induced Tau-pathology in cellular models,
animal models and from patient biomarkers
Despite the many criticisms against the amyloid cas-
cade hypothesis, accumulating evidence obtained in
in vitro and in vivo models and in patients provides
solid experimental support for the hypothesis, and par-
ticularly for AB-induced Tau-pathology. More import-
antly these data position AP as accelerator/initiator and
Tau as executor of the pathogenetic process, designat-
ing their interaction as crucial triggering event in AD.
In depth analysis of the mechanisms and the relation
between different pathological characteristics and their
role in the etiology, should allow the design of fine-
tuned therapies for AD with increased efficacy. More
particularly, the molecular or physical identity of the
toxic form(s) of AP (denoted AB*), and of Tau (denoted
Tau*), temporal and spatial localization of their action(s),
(cell-autonomous or not, pre- or post-synaptic, intra- or
extra-cellular), the respective contribution of amyloid and
Tau to the etiology of AD, and the mechanistic link(s) be-
tween amyloid and Tau pathology should be investigated
for this purpose.

We here present an overview of in vitro and in vivo
models available for further analysis of AB-induced Tau-
pathology, which remains to be mechanistically resolved
unequivocally. The existence of the apparent panoply of
different models and their diversity is to be considered a
particular asset to delineate those mechanisms that are
robustly and consistently linked with AB-induced Tau-
alterations.

In vitro models of AB-induced Tau alterations

In vitro experiments using various cell types, ranging
from neuronal cell lines to primary hippocampal and
cortical neurons and hippocampal organotypic cultures,
have demonstrated AB-induced Tau-alterations. These
include increased phosphorylation and cytoplasmic and
dendritic translocation, often linked to neurodegenera-
tion which was Tau or even P-Tau dependent [26-38].
Most difficult to identify are the signaling cascades in-
volved and/or the exact identity of AB peptides involved.
Definition of the exact form of AP-peptides is further-
more hampered by the fact that there is a continuous
interconversion between different physical forms of the
self-assembling AP peptides. The variety of forms of
amyloid peptides used experimentally, ranged from over-
expression of mutant APP, to the extracellular applica-
tion of oligomeric or fibrillar AB_40; 1-42; 1-43, 25-35) in
concentrations ranging widely. Most experiments were
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performed with synthetic Ap [26-30,32,33,35,37,38], but
also with naturally secreted AP or AP dimers and oligo-
mers extracted from human AD brains [36]. Applica-
tion of amyloid peptides increased Tau-phosphorylation
and altered Tau conformation to various extent, often
associated with or dependent on GSK3 activation
[26,28-31,35,38], which was reported to occur downstream
of NMDA-receptor signaling [38]. Other signaling path-
ways have been reported including CAMKK2-AMPK
kinase [37] and C-Jun N-terminal kinase [33], further ham-
pering the identification of a common or primary mech-
anism(s). Finally, neurons differentiated from induced
pluripotent stem cells (iPSC) from fibroblasts of 2 pa-
tients with familial AD with an APP gene duplication,
demonstrated increased Tau phosphorylation at Thr-231,
associated with GSK3 activation, while beta-secretase in-
hibition reduced p-Tau and GSK3 activation [39]. Besides
GSK3, several other signaling mechanisms have been im-
plicated in amyloid induced Tau-alterations in primary
neurons or other neuronal cell lines, thereby not allowing
a conclusive identification of the cascade(s) involved. Al-
though identification and validation of the primary mech-
anism(s) in in vivo systems is required, compelling
evidence — summarized above — indicates that Ap induces
pathologically relevant Tau-alterations in neurons in vitro.

In vivo models of AB-induced Tau-pathology

A growing list of different animal AD models has repro-
ducibly and robustly recapitulated Ap-induced Tau-
pathology. Although initial mouse models expressing
mutant APP or mutant APP/PS1 without overexpression
of Tau did not display neurofibrillary tangles nor robust
Tau aggregation in mouse brain, subtle changes on en-
dogenous mouse Tau induced by high A loads encom-
passed Tau hyperphosphorylation. Furthermore, models
with high plaque loads consistently displayed presence
of dystrophic neurites containing hyperphosphorylated,
pathological Tau surrounding senile plaques [40-44].
The lack of formation of NFT could be ascribed to the
low propensity of endogenous mouse Tau to form NFTs
within the life span of mice without Tau overexpression.
Transgenic rats overexpressing mutant APP/PS1 dis-
played increased Tau-alterations in the brains, primarily
demonstrated with antibodies against p-Tau and confor-
mationally altered Tau, independent of overexpression of
Tau, on the wild-type Tau genetic background [45,46].
The difference with mouse models might be due to dif-
ferent properties of murine and rat Tau, particularly the
expression of different isoforms and/or possibly different
levels of expression. Importantly, 3 seminal papers have
demonstrated Ap-induced formation of NFTs in mice
overexpressing human mutant Tau [47-49]. Injection of
synthetic pre-aggregated AP peptides in the brains of
Tau transgenic mice, resulted — albeit to a rather limited
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extent — in the induction of NFTs remote from the in-
jection site, in neurons functionally connected with the
site of injection [47]. These data point towards extracel-
lular AP as a contributor of amyloid induced Tau-
pathology. Secondly, crossing mutant APP transgenic
mice with TauP301S mice resulted in increased num-
bers of NFTs — in female offspring only — [48]. Finally,
anti-Ap immunization in a model with combined amyl-
oid and Tau-pathology reduced early pathological
changes in Tau phosphorylation [49,50]. These findings
were further confirmed and extended towards more ro-
bust induction of Tau-pathology in different combina-
tions of Tau transgenic mice with transgenic mice
overexpressing mutant APP or APP/PS1, and following
injection of AP peptide enriched brain extracts from
mice or patients [51-56]. Furthermore, soluble Ap and
Ap-oligomers induced Tau-phosphorylation in the
brains of wild-type Tau overexpressing mice [57]. More re-
cently, APP/amyloid induced NFT formation was demon-
strated in Tau transgenic mice expressing human wild type
Tau (3R/4R) [58]. These different results are summarized
in Additional file 1: Table S1 and indicate that ApP-
induced Tau-pathology is very reproducible and con-
sistently recapitulated in different models. In contrast,
amyloid pathology was either not affected [53-55] or
not aggravated by Tau-pathology [56]. The availability
of the parental mouse strains thereby allows analysis of
the respective contributions to the AD-related pheno-
typic features. We recently described a model with ro-
bust combined amyloid and Tau-pathology, which
displayed a dramatic aggravation of Tauopathy com-
pared to the single Tau transgenic mice (Figures 1 and 2).
Comparative analysis with the parental amyloid and Tau
only mice, demonstrated that aggravated Tau-pathology
contributed to synaptic and cognitive deficits and to hip-
pocampal atrophy in this model [55]. Moreover, dramatic
hippocampal atrophy was demonstrated and obvious de
visu during immunohistochemical analysis, thereby recap-
itulating an AD pathological feature not displayed in all
models in a robust way. Taken together, animal models
of AD have reproducibly and robustly recapitulated
AB-induced Tau-pathology in a variety of different in vivo
models, while Tau-pathology did not induce increased
amyloid pathology.

AD patients: an integrated model of biomarker analysis
and histopathological analysis: A accelerates antecedent
subcortical Tau-pathology

The most relevant data for AD research are undoubt-
edly patient data, encompassing combined analysis of
clinical assessment, postmortem histopathological ana-
lysis, genetics and dynamic biomarker analysis. Yet
these studies are confronted with more limited possibilities
for mechanistic analysis. The obligatory histopathological
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Amyloid cascade hypothesis in mice with Mice with combined amyloid- and Tau-
combined amyloid- and Tau-pathology pathology compared to the parental strains

No changes in amyloid plaque load

Amyloid
pathology

Astrogliosis

Aggravation of Tau-pathology
F+/T+ F-/T+
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Cortical/hippocampal atrophy
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Figure 1 Amyloid cascade hypothesis in transgenic mice with combined amyloid and Tau pathology (left panel). Hippocampal (HC; CA1) and
cortical (Cx) immunohistochemical staining for amyloid plaques (anti-AB, WO?2), astrocytes (GFAP), microglia (Iba1), P-GSK3 (GSK3pT216/279), P-Tau
(anti-pTau, AT-8) and NeuN for cortical/hippocampal atrophy (all images are 20x, except NeuN at 4x) is presented in transgenic mice expressing
mutant APP/PST and mutant Tau [55]. These mice were generated by crossing mutant APP/PST and mutant Tau mice, respectively denoted as F+/T-
(5xFAD; [59]) and F-/T+(TauP301S; [60]). Of note, AT-8 staining was optimized to match Gallyas silver staining patterns, hence representing NFTs (data
not shown). Main pathological features found in F+/T+ mice (right panel). Immunolabeling with anti-AB (WO2), showing no changes in amyloid
plaque load in the cortex of F+/T +and F+/T- mice (upper panel, 4x and 20x); Aggravation of Tau-pathology, anti-pTau (AT-8) staining (NFT),

in hippocampal CA1 region and cortex of F+/T+ compared to F-/T+ parental strain transgenic mice (middle panel, 20x); anti-neuronal nuclear
staining (NeuN) showing decreased cortical and hippocampal area in F+/T+ compared to F-/T- mice (lower panel, 4x).
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“2 Amyloid plaque
7P NFTs

Figure 2 Graphical representation of the regional distribution of amyloid plaques and NFTs in hippocampus and entorhinal cortex (upper
panel, hippocampal-entorhinal connectivity map modified after Deng et al. [61]). Analysis of the relation between amyloid plaques (anti-Ap,
WO2, green) and Tau-pathology (anti-pTau, AT-8, red) in entorhinal cortex (lower left panel) and hippocampus (lower right panel) of F+/T+ transgenic
mice, with details of the regional distribution of amyloid- and Tau-pathology for each of these regions.
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signature of AD, is the co-occurrence of amyloid plaques
and neurofibrillary tangles highlighting the importance of
the two respective aggregated proteins AB and Tau [1,4,5].
Their respective contributions, their chronological import-
ance and interrelation have been a matter of intense ani-
mated debates since their discovery (from “Tauists/Baptist”
to “chicken or egg”). As elegant discussions and in depth
reviews of patient data are provided by others, we restrict
the discussion here to a concise description of the inte-
grated hypothesis which reconciles these discussions
[1,62-72]. Dynamic biomarker analysis as indicators of key
pathological features in AD, has elegantly addressed the
temporal evolution of these processes in relation to each
other and to disease progression [65,71]. Measures of cere-
brospinal fluid (CSF) Ap42 and PET amyloid imaging were
used as indicators of brain AP deposition. Increased
levels of CSF total Tau (t-Tau) and phosphorylated Tau
(p-Tau) were taken as indicators of NFT burden in
these studies [65,71]. Hypometabolism on fluorodeoxyglu-
cose (FDG) PET and atrophy on structural MRI as mea-
sures of neurodegeneration. Dynamic biomarker analysis

revealed a prototypical sequence of biomarker changes
in the pathogenic process [65,71]. Earliest changes ap-
peared in CSF AP42, closely followed by amyloid PET
imaging with an important lag period before the first
symptoms. Alterations in CSF Tau (t-Tau and p-Tau)
appear later in the disease process and precede cogni-
tive decline and brain atrophy [65,71]. Although this se-
quence is completely in line with the amyloid cascade
hypothesis as stated above [1], it was confronted with
seemingly contradictory histopathological data demon-
strating appearance of Tau-pathology early in life in
asymptomatic individuals. Braak et al. demonstrated
that Tau-pathology occurs first in limbic regions (ento-
rhinal cortex and CA1) and even earlier in locus coeru-
leus in brain stem in very young cognitively normal
individuals in the absence of amyloid pathology [66].
Progression of Tau-pathology occurs in a stereotypic
way, which has been accepted as standard for staging
the disease process [5,73,74]. This pattern is characterized
by first appearance of NFTs in transentorhinal cortex
(Stages I-1I), subsequent appearance in hippocampal CA1l
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(II-1V), and subsequent spreading to temporal (V) and
isocortical areas (VI) [5,73,74]. Although these data dem-
onstrate that Tau-pathology can occur prior to amyloid
pathology, neuropathological evaluation by Price and
Morris further elaborated these findings. They demon-
strated that early Tau-pathology associated with normal
ageing, was markedly increased and progressed more
rapidly in individuals with A pathology [62,64,67,71]. AP
pathophysiological changes were thereby proposed “to
qualitatively transform and accelerate the antecedent sub-
cortical Tauopathy leading to neocortical spread of NFTs”
[62-64,67,71].

We would like to integrate in this discussion compel-
ling data from in vitro and in vivo models. Although
we take into account the limitations of animal models,
often using multiple mutations, overexpression (even
of multiple genes sometimes), the invariable demon-
stration of AP-induced Tau-alterations in all these dif-
ferent models [45-57] very strongly support its
relevance in the pathogenetic process. Conversely, the
fact that in these models Tau-pathology did not affect
or aggravate amyloid pathology argues rather against
AP downstream of Tau as recently proposed [69]. Intri-
guingly, AP accumulation in AD patients occurs tem-
porally and anatomically distinct from Tauopathy and
is able to accelerate Tau pathology and to facilitate neuro-
degeneration [63,67,71,73,75]. This is strikingly in line
with data obtained in animal models [47,51,52,55], dem-
onstrating occurrence of AB-induced Tau-pathology along
neuronal projections. This includes our model(s), in which
NFTs invariably develop early and robust in CA1 region
of hippocampus, which is nearly devoid of amyloid pla-
ques but projects to brain regions with high and early
plaque load [52,55] (Figure 2). Similar data, underscoring
ApB-induced Tau-pathology along neuronal connections,
were obtained in different models following injection of
AP [47], or AB-containing brain extracts [51] or different
APP/Tau mice [52]. In addition, besides a robust aggra-
vation of Tau-pathology also hippocampal atrophy was
significantly increased in mice with combined amyloid
and Tau-pathology (APP/PS1/Tau mice) compared to
the parental strain, with Tau-pathology only [55]. The
latter is in line with the fact that in patients amyloid
pathology not only accelerates Tau-pathology, but also
facilitates associated neurodegeneration [67].

Taken together, data from in vitro and in vivo models
and from patient analysis support a model in which Ap
accumulation acts as a triggering event in the patho-
genetic process by accelerating antecedent — relatively
silent — Tau-pathology. Hence understanding this trig-
gering event of A-induced Tau-pathology is abso-
lutely critical to understand AD and for development
of therapeutic strategies, requiring analysis in in vitro
and in vivo models.
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In vivo models with AB-induced Tau-pathology:
tools to explore pathways linking amyloid and
Tau-pathology

Although mechanisms linking amyloid and Tau-pathology
have not been conclusively and exhaustively identified,
available data support several potential mechanisms that
can contribute exclusively or concomitantly. We here use
a reductionist approach and limit the discussion to mech-
anisms which are corroborated or are consistent with ex-
perimental data in our models [52,55] (Figure 3), thereby
not excluding contributions of mechanisms not presented
here. Theoretically, AR peptides may interact directly or
indirectly with neurons to induce Tau-alterations. First,
direct interactions with neurons that have been reported
include specific binding to several neuronal receptors (cfr
4.1) or, because of the sticky nature of amyloid peptides,
less specific interaction with membranes and proteins.
Secondly, indirect mechanisms may contribute to amyloid
induced Tau-pathology, including amyloid induced in-
flammation via glial cells (cfr 4.2). Finally, in view of the
recently observed cross-seeding between misfolded pro-
tein species, we need to consider that amyloid peptides
may act as direct seeds for Tau-aggregation (cfr 4.3). This
latter option has not yet been experimentally explored in
detail, although some data are consistent with the hypoth-
esis that pre-aggregated misfolded Ap peptides could seed
and propagate Tau-misfolding and hence aggregation by
cross-seeding.

Direct mechanisms of amyloid induced Tau-alterations —
interaction with neuronal receptors and membranes
From the initial definition of amyloid plaques as extra-
cellular AP aggregates and NFTs as intraneuronal Tau
aggregates, an interaction of extracellular Ap with neu-
rons through membranes or receptors is proposed to
be required for AB-induced Tau-pathology. This view,
however, was complicated by the identification of intra-
neuronal forms of A, extracellular forms of Tau and
different forms of AP peptides as toxic candidate(s).
Nevertheless, as injection of amyloid peptides — synthetic
or APP mouse brain derived — induce Tau-pathology in
Tau transgenic mice [47,51], extracellularly applied AP
contributes to Tau alterations hence most straightfor-
ward requires interaction with neuronal receptors and/
or membranes. Many studies have demonstrated inter-
actions between receptors and AP peptides. Binding of
AP to different types of receptors has been reported, in-
cluding alpha7 nicotinic acetylcholine receptors (a7
nAChR), NMDA and AMPA receptors — directly or in-
directly —, the Ephrin-type B2 receptor (EphB2), insulin
receptors, the receptor for advanced glycation end-
products (RAGE), the prion protein receptor (PrP-recep-
tor), the mouse paired immunoglobulin-like receptor (PirB)
and its human counterpart, leukocyte immunoglobulin-like
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Potential mechanisms:

APP-> AB - AB*

. AB > neuronal receptors/membranes

(NMDA, AMPA, a7 nAChR, PrC, mGluR5, PirB,

cross signalling)=> perturbed signalling -2

Ca2+, kinases (GSK3), phosphatases = pTau
Black box - Tau* - toxicity/spreading

Il. AB = inflammation = cytokines/cytotoxic
factors = Tau alterations = Tau-aggregation

Tau - TauA-> Tau* . AB —> templated Tau-misfolding (cross
seeding) = Tau-aggregation
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Figure 3 Schematic presentation of proposed mechanisms involved in AB-induced Tau-aggregation as discussed in this review (elements
in panel I. and Il. modified from Servier Medical Art; elements in panel Ill. modified from Jucker and Walker [76], Thal et al. [75], Braak and
Braak [73]).
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receptor (LilrB2) [77-90]. In addition, to specific bind-
ing of amyloid peptides to receptors, more non-specific
binding of the “sticky” amyloid peptides to membranes
or membrane-proteins must be considered as a mech-
anism of action of amyloid toxicity [77].

Monomeric or oligomeric forms of AP;_4, have been
demonstrated to bind with high affinity to a7 nicotinic
acetylcholine receptors [78], which was inhibited by a7
nAChR ligands and found to be involved in amyloid in-
duced synaptic and cognitive defects [78,91]. Depending
on the form of the AP peptide that binds the receptor,
the physiological response varies [78]. In vitro findings
using neuroblastoma and ex vivo synaptosomes demon-
strated increased Tau-phosphorylation (Ser-202, Thr-
181, and Thr-231) following AP peptide binding to o7
nAChR, which thereby represents a receptor potentially
involved in amyloid induced Tau-pathology. Involvement
of a7 nAChR in AB-induced Tau-aggregation in animal
models remains to be further explored in detail.

Mechanisms involved in AB-induced synaptic dysfunc-
tion are under meticulous analysis (excellently reviewed
in [92-96]). Accumulating evidence supports a role of
NMDA -receptors in the etiology of AD, by AP mediated
effects on synaptic dysfunction and their — indirect —
interaction with AP peptides [95]. Effects of Ap on syn-
aptic plasticity resulting in shifting synaptic potentiation
(LTP) to synaptic depression (LTD), have been consist-
ently reported in different APP transgenic mice and in
different experiments using extracellular application of
different forms of — oligomeric — AP to hippocampal
slices [92-96]. Several studies have indicated downstream
effects of amyloid peptides on NMDA-receptor function
[95,97,98]. AP derived diffusible ligands (ADDLs) have
been demonstrated to bind to synaptic sites in primary
neuronal cultures, co-localizing with but not completely
overlapping with NMDA receptors [97,98]. Hence, Ap
peptides were proposed to indirectly interact with
NMDA-receptors, potentially through the EphB2 re-
ceptor, a tyrosine kinase receptor known to regulate
NMDA receptors or other receptors [88]. Different re-
ports further demonstrated that prolonged AP incubation
promotes endocytosis of synaptic NMDA receptors — par-
ticularly the NR2B subtype —, resulting in depression of
NMDA evoked currents and reduced CREB signaling re-
quired for long term memory [95,97-99]. Several
mechanisms have been invoked to explain impaired
NMDA -function and an “LTP to LTD shift” following
AP incubation. These included a role for extrasynaptic
NR2B receptors, conformational changes of the NMDA
receptors, a switch in NMDAR composition from
GluN2B to GIluN2A [99], changes in downstream sig-
naling cascades or indirectly via mGIuR5 [100]. Several
studies further indicated a modulatory role of Tau in
AB-induced excitotoxicity [101] linked to NMDA-
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receptors. Initially, excitotoxicity, seizures and prema-
ture death in APP transgenic mice have been demon-
strated to be rescued by Tau-deficiency [102-104].
Follow-up studies further revealed that Tau-dependent
targeting of fyn couples the NMDA-receptor to exci-
toxicity and that mistargetting of fyn mitigates Ap-
toxicity [94,101,105-108]. Recent evidence indicates a
role for the AP -fyn-Tau triad in impaired LTP and cog-
nition [104]. Other toxic effects of Tau and AP may be
related to this excitotoxity, for instance Ap-induced de-
fects in axonal transport [109] or mitochondrial dys-
function [110], but may also arise through other yet to
be defined mechanisms. Taken together, compelling
data support a role of NMDA-receptors in AB-induced
impaired synaptic plasticity — shifting synaptic potenti-
ation (LTP) to synaptic depression (LTD) pathways.

Of note is the demonstration of a role of GSK3p as
regulatory switch between LTD and LTP [111] and the
fact that AP-induced deficits in LTP are rescued by
GSK3p inhibition [112]. Finally, AB-induced reduction
of NMDA-dependent LTP was linked to increased Tau-
phosphorylation and GSK3 activation in hippocampal
slices [104]. These data could point to a role of NMDA-
receptors in AP-induced changes in Tau, possibly via
GSK3p. This hypothesis is consistent with — yet not
proven by — findings of increased GSK3 activation in 2
different models of AB-induced Tau-pathology that we
have analyzed [52,55], and with the fact that inhibition
of GSK3 using adeno-associated-viral-mediated knock-
down in a model with combined amyloid and Tau-
pathology could reduce the latter [113]. Detailed ana-
lysis of a potential link between Ap-induced effects on
NMDAR-dependent synaptic dysfunction — or different
Ap-induced synaptic defects — and the amyloid induced
pathological alterations in Tau leading to Tau-aggregation
needs to be further performed and its consistency and ro-
bustness needs to be proven in different models.

Although a complete review of Af-receptor or Ap-
membrane interactions is beyond the scope of this work,
we here would like to emphasize that unequivocal and
consistent identification of the receptor(s) or neuronal
membrane interaction and the downstream signaling
cascades primarily responsible for amyloid induced Tau-
pathology is still lacking. With regard to AB-receptors
some puzzling questions remain, as previously raised
[89,96] i) Which are the common characteristics of an
AP receptor? Is there a common structure or sequence
that allows its binding? ii) Which are the specific (oligo-
meric) forms of AP that bind to the receptors? iii)
Which is the toxic form of AB? - Does this form bind to
a specific receptor? - and particularly in the context of
this review: iv) Does binding of amyloid peptide to this
receptor mediate amyloid induced Tau-pathology? and if
so v) Via which signaling cascades?
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In case of involvement of a neuronal receptor in Af-
induced Tau-aggregation, the complete pathway between
binding of AP to this receptor(s) and induced Tau-
alterations and Tau-aggregation remains to be identified
in detail. Comparative analysis in different models of
amyloid induced Tau-pathology to pinpoint this mech-
anism in an unequivocal way is required and enabled by
the availability of different models.

Amyloid induced inflammation - an inducer of
pathological Tau-alterations

Senile plaques are marked by the presence of astro- and
microgliosis closely associated with amyloid plaque de-
position [3-5]. In addition, astro- and microgliosis are
invariably detected in brains of AD patients, originally
already described by A. Alzheimer, although not directly
used as a diagnostic hallmark for AD [3-5]. In vitro data
support a role for micro- and astroglial roles in Ap-
induced Tau-phosphorylation [114-116] as co-cultures
with glial cells increased Ap-induced Tau-phosphorylation
in primary neurons [114-116]. Furthermore, in vivo
models have invariably and consistently recapitulated
astro- and microgliosis induced by amyloid pathology
[44,115]. And, different reports have demonstrated that
Tau-pathology is dramatically aggravated by acute and
chronic inflammatory insults that induce micro- or astro-
gliosis [117-119]. It follows that Ap-induced inflammation
can contribute to AB-induced Tau pathology. Consistent
with this result is the fact that blocking of IL-1 signaling,
using an IL-1-R antibody attenuated Tau-pathology in
triple transgenic mice [118], while increasing IL-1p exac-
erbated Tau-pathology [120]. An exhaustive review of the
role of inflammation in AD models is beyond the scope of
this work, but it will be important to corroborate these
findings in different models and particularly to identify
the role — and molecular mechanisms — of inflammation
in AB-induced Tau-pathology.

Amyloid peptides may act as seeds to qualitatively
transform and accelerate antecedent Tau-pathology by
“cross-seeding” mechanisms: Transformation of “mild
Tau-strains” to “aggressive Tau-strains” by A, triggering
accelerated prion-like spreading of Tau-pathology along
neuronal circuits — “a working hypothesis”

Recent data have indicated self-propagation of pathogenic
protein aggregates in a remarkable variety of neurodegen-
erative disorders ranging from AD, to Parkinson’s disease,
Huntington’s disease to Tauopathies [20,76,121]. Specific
proteins are misfolded and can subsequently act as seeds
that structurally induce misfolding of proteins, causing
them to aggregate in pathogenic assemblies ranging from
small oligomers to large fibrillar amyloids. In this way, for-
mation of minute amounts of misfolded proteins can act
as self-propagating agents which initiate and propagate
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protein misfolding to functionally connected brain areas
[20,76,121]. These prion-like spreading properties have re-
cently been demonstrated for Tau [19-22], and could con-
tribute to the characteristic spreading of Tau aggregates,
resulting in their spatio- and temporal characteristic
spreading to brain regions, as documented by Braak and
Braak [73]. Aggregated misfolded Tau extracted from
brains of transgenic mice and of different patients suffer-
ing from different Tauopathies resulted in seeding and
propagation of Tau-pathology in a seed dependent man-
ner in brains of wild type Tau transgenic mice [19,20,22].
Similar findings have been reported for misfolded alpha-
synuclein in neurons in culture and in mouse brain
[122-125]. Intriguingly, misfolded alpha-synuclein seeds
were able to initiate and propagate Tau-aggregation, re-
vealing the potential of cross-seeding between different
types of misfolded proteins [126]. Several reports have in-
dicated that AP peptides also display prion-like seeding
[76,121], enabling initiation and propagation of amyloid
plaque formation to remote brain regions. Previous stud-
ies demonstrated that Ap and Tau in vitro can form sol-
uble complexes [127]. Interestingly, in different models,
injection of pre-aggregated synthetic amyloid peptides
[47], or aggregated amyloid peptide enriched brain ex-
tracts [51] induced Tau-aggregation at the injection site
but also in functionally connected brain regions remote
from the injection site. This indicates that aggregated
amyloid peptides can initiate and propagate Tau-
aggregation in functionally connected brain regions
[47,51]. In line with these findings, we observed in our
model, as described above, a consistent and robust in-
duction of NFT formation (e.g. CA1) in regions with only
very scarce plaques, but functionally connected to brain
regions with high plaque density (subiculum) [55]
(Figure 2). In view of these data, a cross-seeding mechan-
ism of misfolded pre-aggregated AP peptides to seed
Tau-aggregation should be considered and further ex-
perimentally addressed as a potential mechanism of
ApB-induced Tau-pathology. Interestingly, such a mech-
anism would reconcile histopathological and biomarker
data in patients, demonstrating that antecedent Tau-
pathology is qualitatively transformed and accelerated
by amyloid pathology in anatomically distinct brain re-
gions. Tauopathy thereby becomes qualitatively trans-
formed by cross-seeding by AP, accelerating its subsequent
spreading along functional brain circuitries. This could
be in line with a change of Tau-conformation or “Tau-
strain” [25] from a milder (associated with normal age-
ing) into a more aggressively propagating “Tau-strain”
(associated with AD) by cross-seeding or templating by
AP. The pre-existence of Tau-pathology may thereby be
a requirement, underscoring why Ap pathology specif-
ically affects neurons with pre-existing Tau-pathology
(Braak stage I-II), and not nearby neurons. Although
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this is an appealing hypothesis it needs to be experi-
mentally addressed in detail.

In vivo models with AB-induced Tau-pathology to
gain in depth understanding of AB-induced
Tau-pathology: pathological entities of A and
Tau and (cellular) localization

Equally or even more enigmatic than the pathways link-
ing amyloid and Tau remains the identification of the
exact molecular and physical (oligomer AB>>, fibrils)
nature of the toxic forms of amyloid entities involved,
as well as whether the mechanism of action is cell-
autonomous or non-cell autonomous, intra-neuronal or
extracellular, synaptic or extra-synaptic, acting through
neuronal connections, or by immediate vicinity. The
existence of multiple and different models represents
an extra asset to address these questions and confirm a
potential mechanism as an important contributor in
different models. Models with combined amyloid and
Tau pathology and synergism are available and are re-
quired to elucidate the mechanisms of AP-induced
Tau-pathology, through intervention studies, and com-
parison with the amyloid and Tau pathology only
models for deconvolution.

Conclusion

We here presented accumulating evidence in in vitro
models, in vivo models and from biomarkers in patients
that supports the amyloid cascade hypothesis, particularly
AB-induced acceleration of Tau-pathology as a critical
trigger in AD. Furthermore, we presented diverse models
that recapitulate AB-induced Tau-pathology and reviewed
some potential contributing mechanisms. This mechan-
ism may be linked to downstream effects of AB-induced
synaptic defects, or to indirect effects mediated by
amyloid induced inflammation. It thereby likely in-
volves interactions of AP species with (neuronal) recep-
tors, non-receptor proteins and/or membranes, that
need to be identified. Furthermore, cross-seeding of mis-
folded proteins, in which Af cross-seeding of Tau, induces
transition from mild Tau-strains to more aggressive
Tau-strains and thereby triggers prion-like spreading of
Tauopathy along neuronal circuitries, was suggested as
a potential mechanism. This was based on the distinct
spatio-temporal distribution of amyloid and Tau-
pathology, which was also observed in transgenic AD
models. A unifying mechanism of amyloid induced
Tau-pathology still needs to be identified, which recon-
ciles different previous data-sets, and which can be
consistently and unequivocally demonstrated in differ-
ent models with amyloid induced Tau-pathology. Most
importantly, in depth understanding of Af-induced
Tau-pathology in terms of identification of the exact
molecular entity, exact molecular mechanism, and their
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respective contributions to and interrelation with associ-
ated pathological features (synaptic dysfunction, neurode-
generation, brain atrophy, inflammation) is absolutely
required to define fine-tuned therapeutic strategies with a
higher success in preventing or halting AD.
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models*.
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Addendum

After acceptance of this review, a model of AB-induced Tau pathology in a
culture dish, using a 3 dimensional neuronal culture was published by Choi
and colleagues [128]. This model recapitulates the formation of amyloid
plaques and AB-induced Tau-pathology. This article and the subsequent
discussion further emphasizes the importance of understanding the process
of AB-induced Tau-pathology. In our review we provide an overview of
available models to study this process and propose some working hypotheses.
The published neuronal culture model is an important addition.
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