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Abstract

Background: Alzheimer's disease (AD) causes progressive loss of memory and cognition, exacerbated by APOE4, the
greatest genetic risk factor for AD. One proposed mechanism for apolipoprotein E (apoE) effects on cognition is via
NMDAR-dependent signaling. APOE genotype-specific effects on this pathway were dissected using EFAD-transgenic
(Tg) mice (5xFAD mice, that over-express human amyloid-beta (AB) via 5 familial-AD (FAD) mutations, and express
human apok), and 5xFAD/APOE-knockout (KO) mice. Previous data from EFAD-Tg mice demonstrate age-dependent
(2-6 months), apoE-specific effects on the development of A pathology. This study tests the hypothesis that apoF4
impairs cognition via modulation of NMDAR-dependent signaling, specifically via a loss of function by comparison of
E4FAD mice with 5xFAD/APOE-KO mice, E3FAD and E2FAD mice.

Results: Using female E2FAD, E3FAD, E4FAD and 5xFAD/APOE-KO mice aged 2-, 4-, and 6-months, the Y-maze and
Morris water maze behavioral tests were combined with synaptic protein levels as markers of synaptic viability. The
results demonstrate a greater age-induced deficit in cognition and reduction in PSD95, drebrin and NMDAR subunits in
the E4FAD and 5xFAD/APOE-KO mice compared with E2FAD and E3FAD mice, consistent with an apoE4 loss of
function. Interestingly, for NMDAR-mediated signaling, the levels of p-CaMK-II followed this same apoE-specific pattern
as cognition, while the levels of p-CREB and BDNF demonstrate an apoE4 toxic gain of function: E2FAD > E3FAD >
S5XFAD/APOE-KO > E4FAD.

Conclusion: These findings suggest that compared with E2FAD and E3FAD, E4FAD and 5xFAD/APOE-KO mice exhibit
enhanced age-induced reductions in cognition and key synaptic proteins via down-regulation of an NMDAR signaling
pathway, consistent with an apoE4 loss of function. However, levels of p-CREB and BDNF, signaling factors common to
multiple pathways, suggest a gain of toxic function. Publications in this field present contradictory results as to whether
APOE4 imparts a loss or gain of function. As with the results reported herein, the overall effect of APOE4 on a given
CNS-specific measure will be the product of multiple overlapping mechanisms. Thus, caution remains critical in
determining whether APOE gene inactivation or therapies that correct the loss of positive function related to apoF4,
are the appropriate therapeutic response.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegener-
ative disease that causes loss of memory and cognitive
function, and is the most common cause of dementia in
individuals over the age of 60. APOE4, the greatest gen-
etic risk factor for sporadic Alzheimer’s disease (AD), in-
creases risk ~3- and 15-fold with a single or double
allele [1-11] compared to APOE3, whereas APOE2 de-
creases AD risk ~2-fold per allele [12-16]. The multifac-
torial mechanisms through which apolipoprotein E
(apoE) affects AD risk ultimately converge on modula-
tion of cognitive function. As well, the amyloid- peptide
(AP) [17-19], the proposed proximal neurotoxin in AD,
is a major cause of impaired synaptic function, particu-
larly soluble oligomeric forms of the peptide (0Ap)
[20-23]. However, how human (h)-apoE interacts with
AP to affect cognitive function, and the potential under-
lying neuronal signaling pathways, remains unclear, in
part due to the lack of a tractable familial AD (FAD)-Tg
mouse model. In addition, debate continues on whether
apoE4 represents an overall loss of positive function or
gain of toxic function, a distinction that significantly
impacts therapeutic approaches for targeting not only
APOE4-induced AD risk, but for the effects on all h-
APOE genotypes.

In AD patients, APOE4 is associated with an earlier
age of onset for cognitive deficits than APOE3 [6-11],
and possibly a faster rate of cognitive decline [24,25],
though results are conflicting regarding the latter. How-
ever, even in the absence of AD, older APOE4 carriers
(60+ years of age) exhibit deficits in episodic memory
and higher rates of cognitive decline compared to
APOE3 carriers [26-29]. Although these data demon-
strate greater apoE4-induced cognitive impairment com-
pared to apoE3, it remains unclear whether this is a loss
of positive function or gain of toxic function. This issue
is highlighted by a recent case report of a 40-year-old
male patient with an ablative frame shift mutation that
results in a complete lack of apoE [30]. The patient is
described as cognitively normal on gross functional tests
(MMSE), raising the hypothesis that all the h-APOE ge-
notypes are either a gain of toxic function, or are not re-
quired for cognitive function. However, sub-domain
tests indicate deficits in memory, language, visual-spatial
abilities and executive function, in addition to signs of
dyslexia [30], supporting the loss of function hypothesis.
Data from Tg mouse models on the role of apoE on
cognitive decline are primarily derived from models that
express h-apoE, but without h-Ap pathology. As with
non-AD patients, in APOE-TR mice, apoE4 is associated
with cognitive deficits in both young (Morris water
maze, Barnes maze) [31,32] and older mice (Morris water
maze, Y-maze) [33,34]. Similar data were also observed in
mice expressing h-apoE under the control of heterologous
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promoters (reviewed [35]). In FAD-Tg mouse models ex-
pressing h-apoE under the control of the NSE promoter,
behavioral performances (water maze) follow the pattern
apoE3 > apoE4 = apoE-knockout (KO), consistent with a
loss of positive function for apoE4 [36]. However, as apoE
is physiologically expressed by glia, the relevance of these
data is unclear.

At the synaptic level, AD patients exhibit decreased
levels of postsynaptic intracellular scaffold proteins, in-
cluding postsynaptic density protein 95 (PSD95) and
drebrin, suggesting post-synaptic disruption precedes
loss of pre-synaptic proteins to initiate the cognitive def-
icits characteristic of the disease (reviewed in [37-39]).
Importantly, decreased levels of PSD95 and drebrin can
lead to decreased expression of N-methyl-D-aspartate
receptor (NMDAR) subunits (N1, NR2A and NR2B)
[37,38]. Clinically, in vivo and in vitro evidence indicate
that AD, AP, inflammation and chronic vasculitis can re-
sult in chronic NMDAR activation, disrupting postsyn-
aptic ionic gradients, long-term potentiation (LTP) and
cognition [37-39]. Further, lower NDMA receptor levels
may result in a decreased Ca**-dependent activation of
the calcium-calmodulin-II (CaMK-II)/cAMP response
binding element peptide (CREB) pathway, leading to de-
creased production of the brain derived neurotropic fac-
tor (BDNF), critical for synaptic function and for
increasing NMDAR levels via positive feedback [39-43].
Mechanistically, an apoE4-induced reduction in post-
synaptic proteins may disrupt CaMK-1I/CREB/BDNF sig-
naling to impair cognitive function [44]. Similar effects are
observed in long-term primary neuron-glia co-cultures, as
apoE4 accelerates the loss of GluN1 levels and mature
spines compared to apoE3 [45]. Further, by inducing intra-
cellular sequestration, apoE4 reduces neuronal cell-surface
expression of NMDA receptors in vitro [46]. However, lit-
tle is known about the APOE genotype-specific effects on
these processes in combination with AD pathology.

To assess whether apoE4 imparts a loss or gain of
function requires a comparison to the absence of apoE
(APOE-KO), not simply a comparison to apoE2/apoE3.
For example, in vivo studies demonstrate that with LPS-
induced inflammation and amyloid deposition, apoE4 is
anti-inflammatory [47] and anti-amyloidigenic [35,48]
compared to apoE-KO, though apoE3 is better than
apoE4. In other data more directly related to synaptic
dysfunction, no differences were observed between
apoE4 and apoE-KO in measures including spine density
and LTP [49,50], with apoE3 higher than both. Finally,
apoE4 exhibits a gain of toxic function compared to
apoE-KO for 0AB42-dependent attenuation of LTP [51]
and 0Ap42-induced neurotoxicity in neuron/glial co-
cultures [52]. Thus, it is critical to determine the effect
of h-apoE on postsynaptic protein expression and signal-
ing in the EFAD and 5xFAD/APOE-KO mice.
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As data indicate that the APOE4-induced risk for AD
is significantly greater in females compared to males in
both humans and APOE-TR mice [35,53-55], female
EFAD-Tg mice [48] were used in this study to identify
the effects of AP pathology on APOE genotype-specific
modulation of behavior. EFAD mice are an AD-Tg
mouse model with h-apoE expressed under the regulated
control of the endogenous mouse (m)-apoE promoter
(APOE-TR) [56] and h-AP42 over-expressed via the
5xFAD-Tg mice, an FAD-Tg mouse model [57]. In
addition, E4FAD mice were compared to 5xFAD/APOE-
KO to address whether apoE4 imparts a loss of positive or
gain of toxic function. Finally, E2FAD, E3FAD, E4FAD and
5xFAD/APOE-KO mice at 2-, 4-, and 6-months of age
were used as previous data demonstrated significant age-
dependent (2-6 months), apoE isoform-specific (apoE4 >
apoE3 = apoE2) effects on the development of AP path-
ology in EFAD mice [48,58,59]. Therefore, from a transla-
tional perspective, it is important to incorporate sex,
APOE genotype, and A pathology in a preclinical model.
Using the recently developed, tractable EFAD-Tg mice and
5XFAD/APOE-KO mice, age-dependent changes in spatial
recognition memory (Y-maze and Morris water maze),
pre-synaptic (synaptophysin) and post-synaptic (PSD95
and drebrin) protein levels, and the NMDAR subunits
levels and activation of the CaMK-II-CREB-BDNF path-
way were measured in 2-, 4- and 6-month female mice.
The results demonstrate a greater age-induced deficit in
behavior and reduction in postsynaptic proteins in the
E4FAD and 5XFAD/APOE-KO mice compared with
E2FAD and E3FAD mice, consistent with an apoE4 loss of
function. However, further results demonstrate that while
phosphorylated CaMK-II (p-CaMK-II) followed the same
apoE-specific pattern as cognition and synaptic protein
levels, levels of phosphorylated CREB (p-CREB) and
BDNF demonstrate an apoE4 toxic gain of function.

Results

Age-dependent decline in E4FAD mice in Y-maze spatial
recognition memory test and deficits in E4FAD and 5xFAD/
APOE-KO mice compared to E3FAD and E2FAD mice

To determine the effect of APOE genotype and age on
cognitive function, spatial recognition memory was
assessed via Y-maze in 2-, 4-, and 6-month EFAD and
5XxFAD/APOE-KO mice. There were no significant dif-
ferences in the number of arm entrances (baseline-line
exploratory activity, Figure 1A) or spontaneous alterna-
tion (Figure 1B) by APOE genotype, however there was
significance in both tests between age groups (two-way
ANOVA, Additional file 1). Bonferroni post-hoc analysis
demonstrated significantly lower arm entrances between 2
and 6 month old mice for E2FAD, E4FAD, and 5xFAD/
APOE-KO (p > 0.05) (Figure 1A). Two-way ANOVA ana-
lysis showed a significant age effect for spontaneous
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alternation, however Bonferroni post-hoc analysis re-
vealed no significance (Figure 1B). Thus, subsequent ef-
fects (Figure 1C,D) were not significantly influenced by
differences in spontaneous exploratory spatial navigation.

Spatial recognition memory was assessed using the nat-
ural tendency of mice to preferentially explore novel over
familiar spatial environments in a two-trial Y-maze test,
measuring the number of novel arms entered (Figure 1C)
and time spent in novel arms (Figure 1D). Two-way
ANOVA demonstrated a genotype and age effect but not
an age X genotype effect for both number of novel arms
entered and time in novel arms (Additional file 1). Bonfer-
roni post-hoc analysis revealed that a significant age effect
was observed for the E4FAD mice from 2-4 months and
from 2-6 months (Figure 1C,D), while E3FAD and
5xFAD/APOE-KO also decreased significantly form 2-6 in
number of arms entered (1C). In comparisons among the
genotypes at each age, EAFAD mice displayed deficits in
spatial cognition (fewer novel arm entries) compared to
E2FAD and E3FAD mice at 4 months, and compared to
E2FAD mice at 6 months (Figure 1C), with no difference
between E4FAD and 5xFAD/APOE-KO mice. Results for
the time spent in the novel arms (Figure 1D) suggest that
both E4FAD and 5xFAD/APOE-KO mice spent consist-
ently less time in novel arms than E2FAD and E3FAD
mice. Of interest, time in novel arms for E4FAD mice at 6
months is significantly lower than 5xFAD/APOE-KO mice,
the only example of an apoE4 gain of toxic function for
the Y-maze (Figure 1D). Together these results are consist-
ent with E2FAD > E3FAD > 5xFAD/APOE-KO > E4FAD
for spatial recognition memory as assessed by Y-maze.

Deficits in spatial and learning and memory in the Morris
water maze are greater in E4FAD and 5xFAD/APOE-KO
mice compared to E3FAD and E2FAD mice
Cognition was further assessed for spatial reference and
working memory using the MWM (Figure 2). Two
MWM tests were utilized to assess the capacity of mice
to learn the location of a hidden platform using relevant
visual cues. A 5-day training phase was used as a meas-
ure of spatial learning and memory, followed by removal
of the platform for two probe trials (Figure 2C) to assess
retrieval of spatial reference memory. All genotypes at
each age exhibited comparable swimming speed and
sensory motor functions, as determined by a visual cue
test (data not shown). Thus, sensory motor or motiv-
ational effects on learning and memory performance
were considered comparable. Swimming tracks for train-
ing and the probe trials were recorded for each day for
each genotype and 2-, 4- and 6-month (representative
example, Figure 2A).

For the 5-day training phase, the time to find the hid-
den platform was recorded and plotted against trial date
at 2-, 4- and 6-month (Figure 2B). There was a genotype
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Figure 1 Age-dependent decline in Y-maze of performance in E4FAD mice compared to E3FAD and E2FAD mice. Results at 2-, 4-, and
6-months of age for E2FAD, E3FAD, E4FAD, and 5xFAD/APOE-KO mice: Y-maze results for (A) the total number of arm entries, (B) percent

alternation, (C) novel arm recognition, and (D) time spent in novel arms.
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APOE-KO. Along the x-axis, color matched *indicates significant differences between time points within a mouse strain. There is no significant
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and training day effect for all age groups (two-way
ANOVA, Additional file 1). Bonferroni post-hoc analysis
revealed that for all the genotypes at each age, the time
to reach the hidden platform decreased from 1 to 5 days
in training phase, indicating that the mice were able to
learn the task, with the exception of 5xFAD/APOE-KO
mice at 4 months. The escape latency for the E2FAD
and E3FAD mice decreased significantly from 1 to 3
days at both 4 and 6 months, while the E4FAD and
5XxFAD/APOE-KO mice required the full 5 days for a sig-
nificant learning effect at 4 and 6 months. It is also inter-
esting to note that from 2-6 months, the escape latency,
measured as the slope of the learning curve, increased
from 2 to 6 months for the E4FAD (-4.26 to -2,30) and
5xFAD/APOE-KO mice (-5.13 to -3.35), suggesting fail-
ure of some compensatory effect over time. In compar-
isons among the genotypes at each age, the escape
latency was longer for E4FAD compared to E2FAD
mice at several training days for 2-, 4-, and 6-months
(Figure 2B). This result suggests that on a given day,
E4FAD mice showed delayed acquisition and poor re-
tention of spatial information from the day before and,
therefore, took longer to reach the position of the plat-
form than the E2FAD mice. In general, the results for

training trials of E4FAD were comparable to 5xFAD/
APOE-KO mice, while E2FAD and E3FAD mice were
comparable.

After 5 days of training, the platform was removed and
the number of times the mice crossed the previous plat-
form location and the time spent in the target quadrant
searching for the platform were recorded (Figure 2C).
There was a genotype and age effect, but not a genotype
X age effect, for both probe trials (two-way ANOVA,
Additional file 1). Post-hoc analysis by Bonferroni re-
vealed a significant age effect for EAFAD mice for both
measures, with a similar trend for the 5xFAD/APOE-
KO. This decline is particularly dramatic for platform
crosses at 6 months (Figure 2C). In comparisons among
the genotypes at each age, there were no genotype ef-
fects at 2 months in either probe trial (Figure 2C). In
comparisons among the genotypes at each age, the
E4FAD mice spent less time in the target quadrant than
both E2FAD and E3FAD mice at 4 months, and less
than E2FAD at 6 months. For the number of platform
crosses, the only significant difference was between
E2FAD and E4FAD mice at 6 months.

The results for the MWM indicate that recently ac-
quired spatial learning and working memory, and long-
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Figure 2 Age-dependent decline in Morris water maze training and performance is exacerbated in E4AFAD and 5xFAD/APOE-KO mice
compared to E3FAD and E2FAD mice. Results at 2-, 4-, and 6-months of age for E2FAD, E3FAD, E4FAD, and 5xFAD/APOE-KO mice: (A) Representative
swimming tracks in Morris water maze for days 1-5 of training (APOE-KO = 5xFAD/APOE-KO). (B) Training trials: Escape latency for hidden platform. (C)
Probe trials: time spent in target quadrant and number of platform crossings. N > 6 per group, expressed as means + SEM. Significant differences at p <
0.05 via two-way ANOVA, Bonferroni post-hoc test identified by: "between E2FAD and E3FAD, § between E2FAD and E4FAD, "between E3FAD and E4FAD.
Color matched *(greem = E2FAD, blue = E3FAD, red = E4FAD, grey = 5xFAD/APOE-KO) between EFAD strain and 5xFAD/APOE-KO. Along the
x-axis, color matched *indicates significant differences between time points within a mouse strain. There is no significant change with age
unless marked.

term reference memory, are impaired in E4FAD mice
compared to E3FAD and E2FAD mice. These data do
not support a difference between EAFAD and 5xFAD/
APOE-KO mice (E2FAD > E3FAD > E4FAD = 5xFAD/
APOE-KO). As with Y-maze, the conclusion is that APOE4
presents primarily as loss of function.

Total apoE levels are lower in E4FAD mice compared to
E3FAD and E2FAD mice

Total apoE (Figure 3) levels in the cortex and hippocam-
pus of 2-, 4-, 6-month EFAD and 5xFAD/APOE-KO
mice were measured by Western blot (representative
blot Figure 3A) and normalized to [-actin. Two-way
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Figure 3 ApoE levels are lower in E4FAD mice compared to E3FAD and E2FAD mice. Results at 2-, 4-, and 6-months of age for E2FAD,
E3FAD, E4FAD, and 5xFAD/APOE-KO mice: (A) Representative Western blot for apoE protein in cortex (CX) and hippocampus (HP) with B-actin as
a control for protein loading (APOE-KO = 5xFAD/APOE-KO). Relative apoE protein levels in (B) CX and (C) HP. N = 6 per group, expressed as
means + S.EM. Significant difference at p < 0.05 via two-way ANOVA, Bonferroni post-hoc test identified by *for E4AFAD compared to E2FAD and
E3FAD. No significant change between time points. *ApoE levels in 5xFAD/APOE-KO mice were > 10-fold lower than E4FAD, p < 0.000001.
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ANOVA showed only a genotype effect for apoE levels
(Additional file 1). Age had no effect on apoE levels in
any genotype in either brain region at any age (Figure 3B,
C). However Bonferroni post-hoc analysis, for both brain
regions at each age, total apoE4 levels were significantly
lower than apoE2 and apoE3 (Figure 3B,C). These data
are consistent with previous studies comparing apoE4
levels with apoE3 in humans and mice [48,60-64] and
support the few published studies comparing apoE4 with
apoE2 levels [48,60]. As would be expected, the levels of
apoE in the 5xFAD/APOE-KO mice were just above
level of detection and significantly lower than any of the
apoE isoforms.

Age-dependent decline in post-synaptic-related protein
levels is exacerbated in E4FAD and 5xFAD/APOE-KO mice
compared to E3FAD and E2FAD mice

To begin to dissect potential pathways for apoE4 modu-
lation of cognitive deficits, levels of presynaptic (synap-
tophysin) and postsynaptic (PSD95, drebrin) proteins
were measured in the hippocampus by Western blot
(representative blot Figure 4A).

There were no age or genotype effects on the levels of
synaptophysin, a presynaptic protein (Figure 4B; two-
way ANOVA, Additional file 1). Two-way ANOVA of
PSD95 (4C) and drebrin (4C) revealed a significant ef-
fect for genotype, age and genotype X age (Additional
file 1). Although post-synaptic proteins PSD95 and

drebrin levels were equal among genotypes at 2 months,
Bonferroni post-hoc analysis showed significant age ef-
fects for both proteins in all genotypes from 2-6 months
with the exception of drebrin levels in the E2FAD mice.
It is also interesting to note that the decrease in both
PSD95 and drebrin for E4FAD and 5xFAD/APOE-KO
were significant from 2-4 months, while E3FAD de-
creased significantly from 4-6 months, and PSD95 levels
in E2FAD mice decreased minimally and only from 2-6
months.

In comparisons among the genotypes at each age, both
PSD95 and drebrin levels in E2FAD mice were significantly
higher than E4FAD and 5xFAD/APOE-KO at 4 and 6
months. Comparisons among genotypes demonstrate that
at 4 and 6 months, PSD95 levels were E2FAD = E3FAD >
E4FAD > 5xFAD/APOE-KO, evidence for apoE as a loss of
function, although there was no difference in drebrin levels
between E4FAD and 5xFAD/APOE-KO mice, and these
drebrin levels were significantly lower than the drebrin
levels in E2FAD and E3FAD mice, with the resulting sum-
mary for drebrin: E2FAD = E3FAD > E4FAD = 5xFAD/
APOE-KO.

Collectively these data support the observation that
postsynaptic proteins are affected prior to presynaptic
proteins [38,39,65-67] and this effect may underlie
apoE-modulated cognitive deficits. Further, as with cog-
nitive dysfunction, apoE represents primarily a loss of
positive function.
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Figure 4 Age-dependent decline in post-synaptic protein levels is exacerbated in 5xFAD/APOE-KO > E4FAD mice compared to E3FAD
and E2FAD mice. Results at 2-, 4-, and 6-months of age for E2FAD, E3FAD, E4FAD, and 5xFAD/APOE-KO mice: (A) Representative Western blot
images for PSD95, drebrin and synaptophysin proteins in HP with B-actin as a control for protein loading (APOE-KO = 5xFAD/APOE-KO). Relative
protein levels of (B) synaptophysin, (C) PSD95 and (D) drebrin. N = 6 per group, expressed as means + S.E.M. Significant differences at p < 0.05
via two-way ANOVA, Bonferroni post-hoc test identified by: Tbetween E2FAD and E3FAD, § between E2FAD and E4FAD, between E3FAD and
E4FAD. Color matched *(green = E2FAD, blue = E3FAD, red = E4FAD, grey = 5xFAD/APOE-KO) between EFAD strain and 5xFAD/APOE-KO. Along
the X-axis, color matched *indicates significant differences between time points within a mouse strain. There is no significant change with age

2 n'ion 4 n'lon 6 n;on

Age-dependent decline in NMDAR subunits levels is
exacerbated in E4FAD and 5xFAD/APOE-KO mice
compared to E3FAD and E2FAD mice

Evidence indicates that reduced postsynaptic NMDAR
levels are involved in cognitive dysfunction in AD [37-39].
Therefore, levels of the NMDAR subunits NMDARI1
(Figure 5B), NMDAR2A (Figure 5C) and NMDAR2B
(Figure 5D) were measured in the hippocampus by West-
ern blot (representative blot Figure 5A).

Two-way ANOVA of NMDAR results show a signifi-
cant genotype and age, but no genotype X age effect
(Additional file 1). Further Bonferroni post-hoc analysis
revealed that at 2 months, the three NMDAR subunits
levels were equal among genotypes except for lower
levels of NMDART1 in 5xFAD/APOE-KO mice, indicating
a loss of apoE4 positive function compared to apoE-KO.
After 2 months, all three NMDAR subunits in all geno-
types decreased from 2-6 months (Figure 5B,C,D), with
the exception of, again, E2FAD, consistent with the re-
sults for NMDAR2A (Figure 4C). Comparisons among
genotypes demonstrate the NMDARI levels are consist-
ently higher in E2FAD mice compared to the other geno-
types, a trend is also observed for the levels of NMDAR2A
and NMDAR2B. While the general trend for the NMDAR
subunits is E2FAD and E3FAD being higher than E4FAD

and 5XxFAD/APOE-KO, it is significant to note that
NMDAR?2B levels are significantly lower in E4FAD com-
pared to 5xFAD/APOE-KO mice at 4 months, with the
trend continuing to 6 months, an example of apoE4 gain
of toxic function (Figure 5D).

Overall, consistent with cognition and levels of post-
synaptic proteins, these data indicates that apoE medi-
ates primarily a loss of positive function with NDMAR
subunits levels: E2FAD > E3FAD > E4FAD =~ 5xFAD/
APOE-KO.

Age dependent decline in p-CaMK-Il levels is significant in
E3FAD, E4FAD and 5xFAD/APOE-KO mice compared to
E2FAD mice; age dependent decline in p-CREB and BDNF is
exacerbated in E4FAD > 5xFAD/APOE-KO > E3FAD > E2FAD
The NDMAR subunit levels were significantly lower in
E4FAD, with a trend in 5xFAD/APOE-KO mice, com-
pared to E2FAD and E3FAD mice. As reduced levels/
activation of the NMDAR pathway CaMK-II/CREB/
BDNF [42,68,69] are observed in AD patients and asso-
ciated with impaired neuronal function in vitro and
in vivo [70-73], these downstream signaling molecules,
specifically the levels of BDNF (Figure 6D) and activated
p-CaMK-II (Figure 6B) and pCREB (Figure 6C), were
measured in the hippocampus by Western blot
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Figure 5 Age-dependent decline in NMDAR subunit protein levels are exacerbated in E4FAD and 5xFAD/APOE-KO compared to E3FAD
and E2FAD mice. Results at 2-, 4-, and 6-months of age for E2FAD, E3FAD, E4FAD, and 5xFAD/APOE-KO mice: (A) Representative Western blot for
NMDART, NMDAR2A and NMDAR2B proteins in HP with (3-actin as a control for protein loading (APOE-KO = 5xFAD/APOE-KO). Relative protein
two-way ANOVA, Bonferroni post-hoc test identified by: "between E2FAD and E3FAD, § between E2FAD and E4FAD, 'between E3FAD and

the x-axis, color matched *indicates significant differences between time points within a mouse strain. There is no significant change with age
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expressed as means + S.EM. Significant differences at p < 0.05 via

= 5xFAD/APOE-KO) between EFAD strain and 5xFAD/APOE-KO. Along

(representative blot Figure 6A). Two-way ANOVA on the
p-CaMK-II, p-CREB, and BDNF results showed a signifi-
cant effect genotype, age and genotype X age interaction
(Additional file 1), Bonferroni post-hoc analysis are de-
tailed below.

p-CaMK-II. No differences in p-CaMK-II levels were
observed among the genotypes at 2 months (Figure 6B).
After 2 months, p-CaMK-II levels decreased from 2-6
months in all the genotypes, although the decrease from
4-6 months was not significant in only E2FAD mice.
Comparison among the genotypes at 4 and 6 months,
revealed p-CaMK-II levels: E2FAD > E3FAD = E4FAD =
5xFAD/APOE-KO.

p-CREB. At 2 months, p-CREB levels were higher in
E2FAD and E3FAD mice compared to 5xFAD/APOE-
KO mice, and E4FAD levels were lower E2FAD mice
(Figure 6C). From 2-6 months, p-CREB levels decreased
significantly in all the genotypes but E2FAD. Compari-
son among the genotypes revealed at 6 months, with a
similar trend at 4 months, the levels of p-CREB for the ge-
notypes was E2FAD > E3FAD > 5xFAD/APOE-KO >
E4FAD, consistent with a gain of toxic function for apoE4.

BDNF. As observed for p-CaMK-II, BDNF levels were
not different among the genotypes at 2 months Figure 6D).

After 2 months, BDNF levels decreased with age in the
E3FAD, E4FAD and 5xFAD/APOE-KO mice, while levels
in E2FAD mice did not change. Comparison among the ge-
notypes revealed that at both 4 and 6 months, the levels of
BDNF for the genotypes was E2FAD > E3FAD > 5xFAD/
APOE-KO > E4FAD. As with p-CREB, levels of BDNF are
consistent with a toxic gain of function for apoE4.

Thus, in contrast to cognitive dysfunction, postsynap-
tic protein levels (PSD95, drebrin, NDMAR), and p-
CaMK-II where apoE4 appears to be a loss of function
compared to apoE-KO, apoE4 demonstrates a toxic gain
of function with p-CREB and BDNF levels.

Discussion

APOE4-induced AD risk is likely the result of multiple,
overlapping mechanisms, both AB-dependent and A in-
dependent (for review [74]). One challenge in understand-
ing the effect of APOE genotype on various mechanistic
readouts is determining whether apoE4 represents a loss
of positive function or a gain of toxic function. Thus, we
investigated the early, age-dependent APOE genotype-
specific effects on cognitive functions and synaptic viabil-
ity in EFAD-Tg mice [48,58,59], specifically female mice
based on data in both humans [53-55] and Tg mice
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Figure 6 Age-dependent decline in NMIDAR-mediated signaling proteins is exacerbated in E4FAD > 5xFAD/APOE-KO > E3FAD > E2FAD
mice. Results at 2-, 4-, and 6-months of age for E2FAD, E3FAD, E4FAD, and 5xFAD/APOE-KO mice: (A) Representative Western blot images for
p-CaMK-Il, p-CREB, and BDNF proteins in HP with B-actin/CREB, (-actin/CaMK-Il or -actin as a control for protein loading, respectively (APOE-KO =
5xFAD/APOE-KO). Relative protein levels of (B) p-CaMK-Il, (C) p-CREB and (D) BDNF. N = 6 per group, expressed as means + S.E.M. Significant
differences at p < 0.05 via two-way ANOVA, Bonferroni post-hoc test identified by: Tbetween E2FAD and E3FAD, Sbetween E2FAD and E4FAD,
Ibetween E3FAD and E4FAD. Color matched fF(green = E2FAD, blue = E3FAD, red = E4FAD, grey = 5xFAD/APOE-KO) between EFAD strain and
5xFAD/APOE-KO. Along the x-axis, color matched *indicates significant differences between time points within a mouse strain. There is no

[33,35,36,75,76] that APOE4 females exhibit significantly
increased cognitive impairment compared to APOE4
males and APOE3 females. In the Y-maze, a significant
age-dependent decline in spatial recognition memory was
observed only for the EAFAD mice from 2-4 months, indi-
cating a more rapid decline at earlier stages of A depos-
ition compared to other genotypes (Figure 1). In the
MWM, a measure of spatial learning and memory, the
E4FAD and 5xFAD/APOE-KO mice were both slower to
learn than the E2FAD and E3FAD mice during the 5-day
training phase (Figure 2B). In addition, both the E4FAD
and 5xFAD/APOE-KO mice exhibited an age-related in-
crease in escape latency from 2-6 months during the train-
ing trials, suggesting the failure of some compensatory
effect over time. As this is consistent with previous studies
demonstrate higher anxiety levels in APOE4-TR and
APOE-KO mice [76,77], we hypothesize that this elevated
stress response may facilitate spatial learning in young
E4FAD mice and mask adverse effects of apoE4 on spatial
cognition. Indeed, it has been shown that normal aging
can counteract stress-induced facilitation of cognitive pro-
cessing in APOE4-TR mice, as measured by MWM, mak-
ing phenotypic differences easier to detect in older mice
[33,75]. This apoE4 effect in the EFAD mice is amplified
by the overproduction of AB42 driven by the presence of
the 5-FAD mutations. Indeed, the 5XxFAD mice show

progressive learning and memory deficits tasks as early as
3 months [78-82]. As deficits in spatial learning and mem-
ory due to apoE4 have mainly been reported in older and
non-AD mice [33,75], our findings are consistent with
synergistic effects between apoE4 and the aggressive Ap42
pathology characteristic of the EFAD mice [48]. In
addition, the use of only female EFAD mice also optimized
the risk of cognitive deficits in the E4AFAD mice. Indeed,
sex interacts with APOE to affect cognitive function. Clin-
ical data indicate that the APOE4-induced risk for AD is
significantly greater, perhaps exclusive to, females [53-55].
These data are consistent with the greater cognitive im-
pairment in female APOE4-TR mice compared to female
APOE3-TR mice, and with both APOE3- and APOE4-TR
females compared to APOE genotype-matched males (re-
view [35]). Overall, as measured in this study, behavior ap-
peared to be primarily an apoE4 loss of function,
specifically: E2FAD = E3FAD > E4FAD ~ 5xFAD/APOE-
KO. However, further studies in humans and Tg-mouse
models are critical to determine the role of potential inter-
active effects among A pathology, APOE genotype and
sex on memory and cognitive decline.

Spatial and learning memory performances are directly
linked to synaptic function. ApoE4 is associated with pro-
gressive synaptic deficits in both AD patients and h-
APOE-Tg mouse models [83-87]. Consistent with previous
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reports, age-induced reductions in synaptic proteins pref-
erentially occurred in post-synaptic proteins compared
particularly to synaptophysin, a pre-synaptic protein
(Figure 4) [81,88-90]. In the current model, levels of
drebrin and PSD95 were lower in E4AFAD and 5xFAD/
APOE-KO mice compared to E2FAD and E3FAD mice,
consistent with an apoE4 loss of function. ApoE is also
linked to long-term potentiation (LTP) and NMDAR-
mediated signaling [50,51]. As the NMDAR component of
synaptic transmission has been shown to decline during
aging [91,92], NMDAR activation may provide a mechan-
istic pathway for understanding apoE-related memory im-
pairment. Indeed, in this study apoE-related cognitive
impairment correlates with a decrease in the levels of
NMDR subunits and components of the signaling pathway
(p-CaMK-1I/p-CREB/BDNE). Levels of all three NMDAR
subunits were reduced with age for all the genotypes with
reductions greater in the E4FAD and 5xFAD/APOE-KO
mice compared to E2FAD and E3FAD mice, consistent
with an apoE4 loss of function (Figure 5). These apoE4-
related deficits in NMDAR-dependent functions likely re-
flect changes to neuronal networks contributing to short
and long-term memory, and their contribution to memory
consolidation [93-96]. Reduction of BDNF levels through
either genetic or pharmacological means not only im-
paired LTP and reduced the number of synapses, but also
caused deficits in the formation and consolidation of
memory [97-99]. However, the effects of APOE genotype
on the p-CaMK-II, p-CREB, and BDNF signaling cascade
are not consistent. Again, all the signaling components
were reduced with age for all the genotypes (Figure 6).
While the greater reduction in p-CaMK-II in E4FAD and
5xFAD/APOE-KO mice compared to E2FAD and E3FAD
mice is consistent with an APOE4 loss of function, apoE4
represents a gain of toxic function for both the activated
p-CREB transcription factor and its downstream target
protein BDNE, as the reductions in p-CREB and BDNF
levels are greater in EAFAD compared to 5xFAD/APOE-
KO mice (summarized in Figure 7, right side). This gain of
toxic function does not translate directly to the behavioral
measures used in this study. One likely possibility for this
seeming disconnect is that a number of signaling pathways
are activated by changes in synaptic proteins, particularly
the NMDAR, that eventually converge to modulate behav-
joral readouts. Thus, the final effect on behavior will be a
composite of a number of signaling pathways (reviewed in
[100]). Taken together, our findings support the notion
that apoE4 exacerbates behavioral deficits in EFAD mice
by decreasing synapse viability by reducing synapse-
related proteins, particularly via down-regulation of
NMDAR and NMDAR-mediated signaling via CaMK-II,
CREB, and BDNF (Figure 7). Consistent with the APOE2
protective effect for AD risk [1-11], these results also dem-
onstrate that E2FAD mice are consistently less susceptible
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to age-induced changes in the components of this cascade,
from signaling to behavior.

ApoE is the primary ligand for the low-density lipo-
protein (LDL) receptor (LDLR) family (apoE receptors),
although Reelin is the primary ligand for ApoE-receptor
2 (ApoER2). ApoER2 and Reelin are important modula-
tors of synaptic plasticity and NMDAR functions in vitro
and in vivo [106-108]. Thus, the association between
ApoER2, Reelin and NMDAR are critical for LTP, mem-
ory formation and retrieval. ApoE4 has been demon-
strated to reduce the cell-surface levels of both ApoER2
and NMDAR via intracellular sequestration, thus inhibit-
ing the ability of Reelin to facilitate glutamate-mediated
synaptic plasticity [46]. The impaired recycling of apoE4
may contribute to this reduction in receptors at the cell
surface [105]. Loss of ApoER2 reduces Reelin binding,
thus further reducing activation of NMDAR via signaling
by the Src family kinases [46,105].

While a number of AB-independent mechanisms likely
contribute to the APOE-associated risk for AD [109],
0Ap has been demonstrated to be preferentially synapo-
toxic (for review [37,110]). We have published the effects
of APOE genotype on AP accumulation in the EFAD
mice at 6-months of age, the age of the mice used for
this study [48,58,59,111,112]. These results demonstrate
amyloid deposition by IHC and total brain Ap42 by
ELISA is: 5xFAD > E4FAD > E3FAD = E2FAD. A three-
step sequential protein extraction protocol using TBS
(soluble), TBS + Triton X-100 (TBSX, detergent), and
formic acid (FA, insoluble) was used for the hippocam-
pus and cortex. In the soluble fractions of both brain re-
gions, both AB42 and oAp are: E4FAD > E3FAD =
E2FAD. There is no APOE genotype difference in the
levels of AB42 in the detergent fraction. In the insoluble
fraction, AP42 is: EAFAD > E3FAD = E2FAD. As the
EFAD mice are on the 5xFAD background, the amount
of AP40 is difficult to detect; the primary species is
AB42. Thus, AP levels (amyloid, soluble and insoluble)
are greatest in the E4FAD mice. This association be-
tween APOE and A} accumulation is consistent with the
functional changes reported herein. Therefore, a particu-
larly relevant approach to interpreting the results of this
study is to consider APOE modulation of soluble Afp
levels at the synapse (Figure 7, left side). Previous publi-
cations from our group and others demonstrate that
apoE isoform-specific effects on AP clearance and inter-
actions with apoE receptors likely play a role in this
process at several levels. It has been specifically demon-
strated that apoE4 both increases the levels of oA and
directs it to the synapse [5]. ApoE isoforms may modu-
late oA levels through differential apoE/AP complex
levels [113]. However, as isolation and analysis of the
apoE/AB complex in vivo is technically challenging, data
are conflicting as to the significance or even the existence
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of this complex [114-116]. Nevertheless, it is interesting to
note that the levels of soluble apoE4/Af complex are
lower than apoE3/AfB and decrease in AD in human syn-
aptosomes, CSF and EFAD-Tg mouse brains, the reverse
of soluble 0Af levels [48,58,59,113]. ApoE receptors also
play a key role, particularly ApoER2, as Reelin signaling
can prevent the oAB-induced inhibition of NMDAR at the
synapse [117]. As well, neuronal LRP1 provides a signifi-
cant mechanism for the clearance Af [101,102] and
in vitro, AP clearance is impaired with apoE4, compared
to apoE3 [103], consistent with a greater accumulation of
intraneuronal AB [104]. To connect these AB-dependent
processes to decreased synaptic function and impaired
cognition requires, in part, a return to ApoER2, NMDAR
and Reelin. ApoE4 induces deficits in ApoER2 and
NMDAR signaling and recycling, as well as reducing
Reelin binding to both receptors [46,105]. Ultimately,
these apoE-mediated differential effects on apoE receptors
and AP accumulation could contribute to the mechanisms
responsible for synaptic dysfunction and cognitive decline

characteristic of observed in the EFAD mice that, ultim-
ately, will translate to AD patients.

Conclusions

Herein we provide evidence that the APOE4 genotype
constitutes a loss of positive function contributing to
age-related deficits in behavioral performances in the
EFAD and 5xFAD/APOE-KO mice (Figure 7-right side;
Table 1A). This loss of positive function with apoE4 was
related to a decrease in post-synaptic proteins, including
NMDAR subunits, leading to impaired NMDAR-related
signaling. However, apoE4 represents a gain of toxic func-
tion for the final components measured in this pathway,
activated p-CREB and its downstream target protein
BDNF. It is our interpretation that multiple signaling path-
ways converge to determine the final synaptic transmission
impairment and learning and memory deficits associated
with apoE4. This conclusion requires further study to de-
termine the potential contributions of other signaling com-
ponents to either an apoE4-mediated loss or gain of
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Table 1 Evidence that APOE4 is a loss of positive or gain of negative function: comparison to absence of APOE

A. Within manuscript

Measure

apoE4 represents:

Mouse model

Behavior/cognition
Postsynaptic protein levels

NMDAR subunits

Loss of function
Loss of function

Loss of function

5xFAD/APOE-KO, EFAD

p-CaMK-II levels Loss of function
p-CREB levels Gain of toxic function
BDNF levels Gain of toxic function
B. Literature overview
Measure apoE4 represents: Mouse model Reference
Anti-inflammatory Loss of function APOE-KO, APOE-TR [47]
Baseline LTP Loss of function WT, APOE-KO, APOE-TR [50]
(Ex vivo hippocampal slice cultures)
Amyloid deposition Loss of function APOE-KO x APPV/17+/ [118],
APPY7VH s GFAP-apoE " [119,120],
5xFAD, EFAD [48]
for review, [35]
ApokE lipidation Loss of function APOE-TR [21]
EFAD [58]
Dendritic spine density Loss of function WT, APOE-KO, GFAP-apoE™* [84]
BBB integrity Loss of function WT, APOE-KO, APOE-TR, GFAP-APOE [122]
AB clearance across the BBB Loss of function WT, APOE™, APOE-KO [123]
Behavior/cognition Gain of toxic function  WT, APOE-KO, APOE-TR [33]
WT, APOE-KO, APOE-TR [34]
WT, APOE-KO, GFAP-apoE [124]
WT, APOE-KO, GFAP-apoE (female) [125]
WT, APOE-KO, NSE-apoE [124,126]
Accumulation of intraneuronal 0AR Gain of toxic function  APOE-KO, APOE-TR [127]
oAR-induced neurotoxicity Gain of toxic function — WT, APOE-KO, APOE-TR [52]

0AB-dependent inhibition of LTP
Neurotoxicity of apoE proteolytic fragments

Neurite outgrowth

Gain of toxic function
Gain of toxic function

Loss of function

In vitro neuron/glial co-cultures
APOE-KO, APOE-TR
Variety with APOE-KO control

APOE-KO olfactory epithelia cultures
(exogenous apoE added) APOE-KO

[51]
[75,128] for review, [129]
[130]

Gain of toxic function

cortical neuron cultures (exogenous apoE added)  [131]

function, data of high therapeutic significance. Table 1B
provides a representative summary of CNS-relevant func-
tions modulated by apoE4 that can be attributed to a loss
of positive or gain of toxic function. Again, it is important
to assess whether apoE4 imparts a loss of positive or gain
of toxic function in comparison to the absence of apoE
(APOE-KO), not simply a comparison to apoE2/apoE3.
Table 1B provides a larger perspective on the interplay
between among multiple functions that exhibit a loss of
positive (for example, anti-inflammatory properties and
amyloid deposition) or gain of toxic function (for

example, toxic proteolytic fragments of apoE and oAp-
induced neurotoxicity in vitro and ex vivo). Only an un-
derstanding of the relative contribution of the functions
measured in this paper, listed in Table 1A and the many
others as yet undefined will enable a confident identifi-
cation of APOE4-induced AD risk as a loss of positive
or gain of toxic function.

Targeting the most potent genetic risk factor for AD
appears a very attractive strategy and is still under in-
tense study. If the hypothesis is that all apoE isoforms,
particularly apoE4, represent a toxic gain of function,
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then reducing APOE expression and/or apoE levels is
one therapeutic approach for AD. However, the potential
dangers of this approach in the human brain are still
subjected to debate [30]. Here, we provide additional
insight into the mechanism by which APOE4 increases
AD risk, in which apoE4 mainly appears as a loss of
positive function. Accordingly, rather than APOE gene
inactivation, therapies that correct the loss of positive
function related to apoE4, such as increasing the lipida-
tion of apoE4 containing lipoproteins [58] appear to be
more appropriate.

Methods

Animals

All experiments were conducted in accordance with the
rules and regulations of the Institutional Animal Care
and Use Committee protocols at Fujian Medical Univer-
sity, in conformance with international guidelines for the
ethical use of animals. Investigators conducting the sam-
ple processing and analyses were blinded for APOE
genotype and age. The 5xFAD/APOE-KO and EFAD
mice (E2FAD, E3FAD, and E4FAD) were supplied by the
LaDu lab. The EFAD mice [48] were originally generated
by crossing 5xFAD mice [57] and h-APOE-TR mice [56].
5xFAD mice express APP K670N/M671L + 1716V +
V7171 and PS1 M146L + L286V under the control of the
neuron-specific mouse Thy-1 promoter, resulting in the
overproduction of specifically AB42 [57]. In APOE-TR
mice, the coding domain of m-apoE is replaced by h-
apoE2, apoE3 or apoE4 [56]. Thus, EFAD mice are APOE-
TR*"*/5xEAD""" [48]. The 5xFAD/APOE-KO mice were
made by knocking-out m-APOE from the 5xFAD mice.

Behavioral tests

Spatial/reference memory was assessed in EFAD mice first
using the Y-maze test, followed by the Morris water maze
(MWM) test, as previous described [90,132]. Y-maze.
Spontaneous alteration including total activity and per-
centage spontaneous alternation/exploration was initially
determined as a measure of normal spatial navigation.
Short-term spatial recognition memory was then assessed
using a two-trial protocol with 10 minute (min) training
(trial 1), 4 hour (hr) inter-trial interval and a 5 min reten-
tion trial (trial 2) for number of entries and time spent in
each arm. MWAM. Acquisition trials (training) consisted of
4 trials (maximum 1 min) a day for 5 consecutive days
with escape latency recorded for each trial. Reference
memory was assessed on the sixth day in a one trial test
for time spent in the target quadrant and the number of
times the original area of the platform was crossed.

Tissue harvest and western blotting
2-, 4- and 6-month EFAD mice were anesthetized with
sodium pentobarbital (50 mg/kg), transcardially perfused
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with ice-cold PBS, brains removed and dissected into
cortex and hippocampus, snap-frozen in liquid nitrogen
and stored at -80°C, as previous described [133]. Dis-
sected brains were homogenized in lysis buffer [90,132]
(50 mM Tris-HCI, 150 mM NaCl, pH7.4, 1% Triton X-
100, 1x protease inhibitor cocktail) and 40 pg of total
protein (BCA protein assay kit; Pierce, Rockford, IL) was
separated on 4—-12% gradient Bis-Tris gels (Invitrogen)
under reducing conditions, and transferred to PVDF
membranes [47]. The following primary antibodies were
used: rabbit anti-PSD95 (1:3000, Abcam), mouse anti-
synaptophysin (1:2000, Abcam), mouse/rabbit anti-p-
actin (1:2000; Abcam), rabbit anti-drebrin antibody
(1:1000; Abcam), rabbit anti-NMDAR1/anti-NMDAR2B
(1:1000; Millipore), anti-NMDAR2A (1:500; Millipore),
mouse anti-apoE (1:600; Santa Cruz), rabbit anti-BDNF
(1:200; Santa Cruz), rabbit anti-p-CaMK-II (1:1000;
Santa Cruz) and rabbit anti-p-CREB (1:1000; Cell Signal-
ing) [90,132]. HRP-conjugated secondary antibodies, en-
hanced chemiluminescence (Amersham, Piscataway, NJ)
and Image ] software were used to quantify densities of
the immunoreactive bands relative to [3-actin.

Statistical analysis

Data are expressed as mean + standard error mean (S.E.
M.). Data were analyzed by two-way analysis of variance
(ANOVA), followed by Bonferroni post-hoc using Graph-
Pad Prism version 4 for Macintosh. The 2-way ANOVA ta-
bles for each Figure have been added as Additional file 1.
Differences for age and genotype were considered signifi-
cant for p < 0.05; n > 6.

Additional file

[ Additional file 1: Two-way ANOVA Tables. J
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