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Abstract

Background: TREM2 encodes for triggering receptor expressed on myeloid cells 2 and has rare, coding variants
that associate with risk for late-onset Alzheimer’s disease (LOAD) in Caucasians of European and North-American
origin. This study evaluated the role of TREM2 in LOAD risk in African-American (AA) subjects. We performed exonic
sequencing and validation in two independent cohorts of >800 subjects. We selected six coding variants (p.R47H, p.R62H,
p.D87N, p.E151K, p.W191X, and p.L211P) for case–control analyses in a total of 906 LOAD cases vs. 2,487 controls.

Results: We identified significant LOAD risk association with p.L211P (p = 0.01, OR = 1.27, 95%CI = 1.05-1.54) and
suggestive association with p.W191X (p = 0.08, OR = 1.35, 95%CI = 0.97-1.87). Conditional analysis suggests that p.L211P,
which is in linkage disequilibrium with p.W191X, may be the stronger variant of the two, but does not rule out
independent contribution of the latter. TREM2 p.L211P resides within the cytoplasmic domain and p.W191X is a stop-gain
mutation within the shorter TREM-2V transcript. The coding variants within the extracellular domain of TREM2 previously
shown to confer LOAD risk in Caucasians were extremely rare in our AA cohort and did not associate with LOAD risk.

Conclusions: Our findings suggest that TREM2 coding variants also confer LOAD risk in AA, but implicate variants within
different regions of the gene than those identified for Caucasian subjects. These results underscore the importance of
investigating different ethnic populations for disease risk variant discovery, which may uncover allelic heterogeneity with
potentially diverse mechanisms of action.
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Background
TREM2 is a transmembrane receptor expressed on micro-
glia, macrophages, monocyte-derived dendritic cells, and
osteoclasts [1,2]. In the human brain, TREM2 is primarily
expressed on microglia and controls two signaling path-
ways: regulation of phagocytosis and suppression of in-
flammatory reactivity. Previous studies have shown that
homozygous loss-of-function mutations in TREM2 are as-
sociated with the polycystic lipomembranous osteodyspla-
sia with sclerosing leukoencephalopathy (PLOSL; also
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called Nasu-Hakola disease) characterized by progressive
early-onset dementia and bone lesions leading to fractures
[3-5]. Association between TREM2 and Alzheimer’s dis-
ease (AD) was initially reported by two independent
groups, who identified a rare heterozygous missense mu-
tation in TREM2, p.R47H (rs75932628-T), that increased
AD risk by about 2–4.5 fold [6,7]. One of these studies
also reported additional, rare coding variants in exon 2 of
TREM2 that were collectively enriched in AD cases com-
pared to controls [6].
Since then, association between p.R47H and AD risk

was replicated in Spanish and French-Caucasian popula-
tions [8-10] and other North American-Caucasian series,
[11,12] but not in Asian populations, where this variant
is either very rare or absent, highlighting the need to
study diverse populations [13,14]. Several studies suggest
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that TREM2-p.R47H could also be a risk factor for Par-
kinson’s disease, frontotemporal dementia (FTD), and
amyotrophic lateral sclerosis [15-18]. These observations
clearly highlight two common themes in neurodegenera-
tive diseases: (1) homozygous and heterozygous muta-
tions in TREM2 have pleiotropic effects on clinically
distinct disorders and (2) neuroinflammation plays a key
role in neurodegenerative disease pathogenesis.
To identify additional AD risk variants in TREM2, sev-

eral deep re-sequencing studies have been performed to
comprehensively screen the coding regions of this gene.
Cuyvers et al. sequenced TREM2 in a Belgian population
and found coding variants [19], some of which were not
previously reported [6]. Although none of the observed
variants were significantly associated with AD risk, Cuyvers
et al. found an enrichment of TREM2 variants in both AD
and FTD patients compared to controls [19]. Recently, our
group performed deep re-sequencing of TREM2 coding
regions in approximately 4,000 individuals of European des-
cent [20]. We identified sixteen non-synonymous variants,
six of which were not identified in previous AD studies
[20]. Besides p.R47H, we found that p.R62H was signifi-
cantly associated with AD risk.
Despite increasing numbers of reports on TREM2 associ-

ations in subjects of European descent, to our knowledge,
there are no comprehensive studies of TREM2 coding vari-
ants in African-Americans (AAs). Furthermore, to date, no
deep re-sequencing studies have been conducted to com-
prehensively catalogue TREM2 rare variants in AAs. Given
this knowledge gap and notable differences of AD risk
variants between AAs vs. Caucasians [21], assessment of
TREM2 in this ethnic group can bring novel insight into
the role of this gene in AD. In this study, we hypothesized
that coding TREM2 variants also affect AD risk in AAs and
sought to catalogue such variants in AAs. To test this hy-
pothesis, we used targeted next-generation sequencing of
pooled-DNA and Sanger sequencing of individual DNA
samples to search for TREM2 variants in two independent
AA cohorts. Follow-up genotyping of six potentially
functional variants was conducted in a large late-onset
AD (LOAD) case–control series comprised of >3,300
AA subjects from five institutions. Finally, we con-
ducted a joint analysis to evaluate the effect of TREM2
variants on AD risk.

Results
Pooled sequencing in 202 AD cases and 136 controls
from WUSM identified eleven non-synonymous TREM2
variants in this AA cohort (Additional file 1: Table S7
and Figure 1A), one of which (p.A105V) has not been
identified in previous AD studies [6,19,20]. Sanger se-
quencing of an independent AA cohort from Mayo,
followed by direct genotyping in 179 AD cases and 334
controls identified seven non-synonymous TREM2 variants
(Additional file 1: Table S8 and Figure 1A). In these se-
quenced samples, we identified one AD subject heterozy-
gous for p.T66M. This variant was previously identified in
its homozygous state in the proband of a Turkish pedigree
with an FTD-like syndrome [16] and also observed in its
heterozygous state in a different Caucasian AD subject [6].
Based on the sequencing data from the WUSM and

Mayo datasets, we selected six variants for follow-up
genotyping in additional cohorts (Table 1): All variants
were non-synonymous coding variants that were ob-
served in both cohorts, except p.D87N, which was only
observed in WUSM, but included as it was previously
shown to be associated with AD risk [6]. Of the selected
variants, p.R47H and p.R62H have been identified as risk
factors for AD in previous studies [6,7,20]. Although p.
T96K was observed in both sequenced cohorts, this was
not chosen for follow-up genotyping due to its almost
perfect linkage disequilibrium (LD) with p.L211P (D’ = 0.99,
R2 = 0.96), which did not have the polyallelic variability
problem of the p.T96 locus (p.T96K/M/R).
After completion of direct-genotyping of these variants

in an additional 525 LOAD cases and 2,017 controls
from Indiana, WHICAP, and Emory, we performed asso-
ciation analyses for TREM2 variants in the combined
cohort of 906 AA LOAD cases and 2,487 elderly AA
controls. The primary results of the combined analysis
of all cohorts are shown in Table 1, and analyses of indi-
vidual cohorts are depicted in Additional file 1: Tables
S7, S8 and Additional file 2: Tables S9, S10 and S11.
Surprisingly, we did not find any significant association
for the previously reported risk variants p.R47H (p = 0.61,
odds ratio [OR] = 1.83 [0.31-10.98]) and p.R62H (p = 1,
OR = 0.75 [0.20-2.69]) (Table 1), possibly due to their
rarity in AAs. Likewise, the rare variant p.D87N was
not significant in this study (p = 1, OR = 1.39 [0.13-
15.37]). In contrast, p.L211P in exon 4 of TREM2 is
significantly associated with increased risk of AD (p =
0.01, OR = 1.27 [1.05-1.54]; Table 1). Additionally, p.
W191X, a stop-gain variant that is only present in the
shortest transcript of TREM2, shows a trend toward associ-
ation with AD risk (p = 0.08, OR = 1.35 [0.97-1.87]; Table 1).
We did not observe any significant heterogeneity in the dis-
ease association of p.W191X and p.L211P between cohorts
(PBreslow-Day = 0.95 and 0.25 for p.W191X and p.L211P re-
spectively; Additional file 3: Figures S1 and Additional file
4: Figure S2). TREM2 p.L211P and p.W191X are in tight
LD but only weakly correlated (D’ = 0.98, R2 = 0.25). When
we adjusted for p.L211P, the association of p.W191X
became insignificant (p = 0.63, OR = 1.10 [0.75-1.61];
Additional file 5: Table S12). Nonetheless, after adjust-
ing for p.W191X, p.L211P remained significantly asso-
ciated with AD risk (p = 0.05, OR = 1.25 [1.00-1.57];
Additional file 5: Table S12). This suggests that of these
two polymorphisms p.L211P is more likely to be the



Figure 1 Protein structures and conservation of TREM2 with marked variants. (A) The top panel shows the protein structure of TREM2
(based on ENST00000373113), a type-I transmembrane receptor that is encoded by a gene containing 5 exons. The isoform ENST00000373122
encodes a different protein coding sequence after exon 3 (gradient fill rectangle) compared to ENST00000373113. The soluble form of TREM2
(ENST00000338469) lacks exon 4, which encodes the transmembrane domain, and contains a coding region after exon 5 (texture fill rectangle).
Figures shown below include the structure of three different TREM2 transcripts, the location of confirmed variants in the most common TREM2
transcript (ENST00000373113), and the location of confirmed variants only in the sTREM2 transcript (ENST00000338469). Most of the variants in the
transmembrane form of TREM2 are located in the extracellular domain with three exceptions, located in the cytoplasmic tail. We identified two
variants that are located near the C-terminus of the soluble form of TREM2. (B) The protein conservation analysis of confirmed TREM2 variants.
Variants are shown with an arrow identifying the corresponding amino acid position. Protein sequences were downloaded from UniProt.
The entries used for each species are as follows: Q9NZC2 (human), Q99NH8 (Mouse), D3ZZ89 (Rat), H2QSZ0 (Chimp), F7CW35 (Frog),
Q2YHU4 (Chicken), and E2RP46 (Dog).

Table 1 Results of the joint-analysis of 6 follow-up SNPs in TREM2

Variant SNP Position AD cases Controls p OR (95% CI) Missing
(%)

SIFT PolyPhen-2

No. of
cases

No. of
carriers

MAF
(%)

No. of
controls

No. of
carriers

MAF (%)

p.R47H rs75932628 6:41129252 899 2 0.11 2,471 3 0.06 0.61 1.83 (0.31-10.98) 0.7 Tolerated Damaging

p.R62H rs143332484 6:41129207 899 3 0.17 2,476 11 0.22 1 0.75 (0.20-2.69) 0.5 Tolerated Benign

p.D87N rs142232675 6:41129133 888 1 0.06 2,473 2 0.04 1 1.39 (0.13-15.37) 0.9 Tolerated Damaging

p.E151K rs79011726 6:41127561 867 6 0.35 2,467 7 0.16 0.22 2.14 (0.74-6.17) 1.7 Tolerated Damaging

p.W191X rs2234258 6:41126429 884 68 3.96 2,475 145 2.97 0.08‡ 1.35 (0.97-1.87) 1 NA NA

p.L211P rs2234256 6:41126655 888 210 12.67 2,472 529 11.1 0.01‡ 1.27 (1.05-1.54) 1 Tolerated Benign

These analyses only used samples from Washington University, Mayo Clinic, Indiana University, WHICAP, and Emory University. Positions are relative to the human
genome build GRCh37. The Fisher’s exact test was used to calculate the p values and effect sizes for p.R47H, p.R62H, p.D87N, and p.E151K using PLINK.
‡Multivariate logistic regression was performed to evaluate the association of p.W191X and p.L211P with AD risk adjusting for age, gender, APOE genotype,
and cohorts.
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underlying risk variant or the stronger proxy for an-
other functional variant. Finally, TREM2 p.E151K did
not achieve significance in the analysis of the combined
series (p = 0.22, OR = 2.14 [0.74-6.17], Table 1).

Discussion
This is the first investigation of TREM2 for coding vari-
ant discovery, validation and AD risk association in a
sizable cohort of AAs (n = 3,393). In this study, we iden-
tified 12 TREM2 coding region variants, six of which
were genotyped in a combined cohort of 906 AA LOAD
cases and 2,487 elderly AA controls. Amongst these six
coding variants, two of them, p.L211P and p.W191X,
showed nominally significant or suggestive association
with risk of LOAD in the combined AA cohort. TREM2
p.L211P was previously observed in two of the three
LOAD risk variant discovery studies [6,19,20] performed
in Caucasian subjects of European or North American
origin. Based on these studies as well as the NHLBI GO
Exome Sequencing Project (ESP) Exome Variant Server
(EVS) [19], TREM2 p.L211P is a rare variant in the
Caucasian population with an allele frequency of ~0.14%
in comparison to African-Americans that have a MAF ~
13%. Likewise, p.W191X, which was observed only one
time in the published TREM2 sequencing studies of
Caucasians [20] and has a MAF of 0.06% in the
European-American (EA) cohort from EVS, has an allele
frequency of ~3% in the AA controls in this study
and ~4% in the AA LOAD subjects. These two variants
are in tight LD with a D’ of 0.98, but R2 of 0.25 due to
different allele frequencies. Logistic regression analysis
conditioned on either variant revealed a stronger influ-
ence of p.L211P, suggesting that this variant is more
likely to be functional than p.W191X. That said, p.
W191X still has an estimated OR indicative of increased
LOAD risk after conditioning on p.L211P, but was no
longer significant.
We note that p.L211P is in tight LD with p.T96K,

which was not genotyped in all cohorts because this
locus is polyallelic (p.T96K/M/R). P.T96K resides within
exon 2 where all previously reported TREM2 disease risk
variants are localized. Given these and the fact that p.
T96K has a predicted damaging functional outcome; we
recognize that the AD risk association observed by p.
L211P may be driven by this variant. Collectively, our
findings are consistent with a model where p.L211P, or
p.T96K, is a stronger functional LOAD risk variant, with
p.W191X also harboring a smaller but independent ef-
fect on LOAD risk. It will also be important to consider
an alternative model, where p.L211P is in LD with sev-
eral functional variants, including p.W191X and/or p.
T96K, thus leading to enhanced risk estimates for p.
L211P. In this alternative scenario, the other functional
risk variants would be non-coding variants that would
not be identified in our sequencing paradigm, rarer cod-
ing variants not tested in our study or a combination of
both. Finally, it should be noted that p.W191X is in LD
with the strongest TREM2 region variant observed in a
LOAD risk GWAS of AAs (rs7748513: OR ± SE, 1.16 ±
0.05, P = 0.001. LD between p.W191X and s7748513 esti-
mated in the 274 Mayo Clinic samples that were in-
cluded in the AA GWAS was D’ = 1, R2 = 0.06) [22].
Given that rs7748513 is deep within intron 2 of TREM2,
the observed association in the AA GWAS is likely a
consequence of tagging functional coding variants.
TREM2 p.L211P resides within exon 4 of ENCODE tran-

script ID ENST00000373113 (RefSeq NM_018965), which
encodes the full length TREM2 protein. Exon 4 is lacking
from the shorter TREM2 transcripts (ENST00000373122
which is a predicted protein and ENCODE ID ENST
00000338469, a.k.a. RefSeq NM_001271821 or TREM-2V;
See Figure 1). ENCODE ID ENST00000338469 encodes a
shorter form of TREM2 (sTREM2) that includes the first
143 of the 156 amino acids within the predicted secreted
extracellular domain, in addition to exon 5 that partially en-
codes the cytoplasmic domain and an additional 54 amino
acid C-terminal domain not shared with the full length pro-
tein. TREM2 p.W191X resides within this unique domain
of TREM-2V and leads to a stop-gain mutation resulting in
a predicted truncated TREM-2V. Theoretically, both of
these coding changes could have consequences on the
function of TREM2 via a number of mechanisms.
TREM2 is a type-I transmembrane protein, the extra-

cellular domain of which was shown to undergo proteo-
lytic processing via an ADAM or MMP protein family
member [23] and in a more recent report, by ADAM10
[24], followed by intramembranous cleavage of its
C-terminal fragment (CTF) by γ-secretase, which also
cleaves amyloid precursor protein (APP) (reviewed
[25]). Disruption of γ-secretase cleavage of TREM2
leads to accumulation of TREM2-CTFs, which in turn
trap the TREM2 signalling adaptor protein DAP12,
ultimately leading to reduced signaling [23]. Hence, a
conformational change in TREM2, which alters cleav-
age by γ-secretase, may have downstream functional
consequences. It will be important to test whether
TREM2 p.L211P which resides within the predicted
cytoplasmic domain of the full length TREM2 alters
its γ-secretase cleavage.
In a recent in-vitro study of TREM2 coding variants

that reside within the extracellular domain, the FTD and
FTD-like syndrome risk variants were shown to reduce
maturation of TREM2, resulting in reduced cell surface
expression, lower sTREM2 release extracellularly and
lower phagocytic activity [24]. Thus, whether p.L211P or
p.T96K may also alter TREM2 maturation with similar
downstream consequences is another potential mechan-
ism that requires evaluation. It is plausible that sTREM2



Table 2 Demographic information of studied African Americans

Cohort No. of
participants

Type Sequencing/Genotyping strategy Cases Controls

N Range of age at
onset/diagnosis

N Range of age at last
assessment

Knight-ADRC + NIA-LOAD 338 Clinical Pooled sequencing/Sequenom + KASPar 202 60-94 136 60-97

Mayo Clinic 513 Clinical Sanger sequencing (exons 1–5 in AD cases
and exon 2 in controls)/Taqman + KASPar

179 61-99 334 60-98

Indiana University 1,321 Clinical Sequenom + KASPar 149 72-102 1,172 70-102

WHICAP 1,024 Clinical KASPar 246 68-101 778 66-99

Emory University 197 Clinical Taqman + KASPar 130 61-98 67 60-94*

Type: Type of Alzheimer’s disease patients. *Range of age at draw.
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per se can have functions in signaling [24] or the im-
mune system [26]. Therefore, the effects of p.L211P,
p.T96K and p.W191X on sTREM2 levels merit investiga-
tion. Finally, p.W191X may reduce sTREM2 protein
levels via nonsense-mediated mRNA decay. The mis-
sense mutations p.T96K and p.L211P could theoretically
result in reduced protein levels via inefficient translation
or degradation of full length TREM2, as previously dem-
onstrated for missense mutations in other genes [27].
One caveat of this study is that since we sequenced a

relatively small number of individuals and only screened
for exon 2 in the Mayo control samples, it is possible
that some potential functional variants (e.g. p.P3T, p.
R5W, p.F170L, p.A192T, p.D216Y, and p.T223I based on
NHLBI Exome Variant Server [EVS] data base) could
have been missed in this study. However, since the afore-
mentioned variants are extremely rare (range from
0.02% to 0.11% according to EVS; see Additional file 6:
Table S13) in African Americans (AAs), our study lacks
the statistical power to reach any meaningful conclu-
sions for their association with AD risk. A larger-scale
sequencing study of the TREM2 region in AAs is needed
to further determine the underlying variants driving the
association with AD.
Figure 2 Study design for assessing TREM2 association with AD
risk in African Americans.
In our study of AA subjects we did not find a signifi-
cant LOAD risk association with p.R47H, the most
widely replicated TREM2 LOAD risk variant in Caucasians,
or with the additional risk variants p.R62H or p.D87N [6,7].
However, p.R47H and p.D87N are more frequent in AA
cases compared to controls, as would be expected. The lack
of association of these variants may be due to their very
low MAF in AAs. All three of these variants are rarer in
AA vs. EA subjects (EVS AA and EA MAFs are p.R47H:
0.02% vs. 0.26%, p.R62H 0.27% vs. 1%, and p.D87N 0% vs.
0.14%, respectively). Given this, our cohort was likely
underpowered to detect any effects from these variants.
Another possibility is that since these TREM2 variants are
risk factors rather than deterministic mutations, AA
subjects may be lacking additional genetic and/or envir-
onmental factors, which exist in EAs and which may po-
tentiate the effects of these variants on LOAD risk.
Besides limited power, another weakness of our study is
the lack of autopsy-confirmation, which is a universal
problem with most LOAD case–control studies, but espe-
cially those conducted in non-Caucasian populations.

Conclusions
In summary, our investigation of TREM2 coding variants
in AA subjects identified variants which confer LOAD
risk, although the most strongly associated variants were
not previously demonstrated as risk factors in Caucasian
studies because they are much rarer in Caucasian sam-
ples. Our study has several strengths including variant
discovery through deep-sequencing of two independent
cohorts via different approaches, validation by genotyp-
ing of a relatively large combined LOAD case–control
series from five centers, case–control association ana-
lyses and a careful analytic paradigm to discern inde-
pendent effects of the top two variants. Our findings
highlight the importance of investigating different ethnic
populations, which may lead to discoveries of novel risk
variants due to allelic heterogeneity. The strongest vari-
ants identified in our study appear to implicate different
regions (cytoplasmic domain) and transcripts (TREM-2V)
of TREM2 in LOAD risk than prior reports (exon 2/
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extracellular domain) in Caucasians. Although the func-
tional consequences of these variants remain to be estab-
lished, such findings pave the way to inquire alternative
disease risk mechanisms and may therefore further our un-
derstanding of the role of TREM2 in LOAD and other neu-
rodegenerative diseases.

Methods
In order to maximize the statistical power in detecting
significant rare-variant association, we analyzed DNA
samples from AA individuals evaluated at Washington
University School of Medicine in St. Louis (WUSM; in-
cludes samples from Knight-Alzheimer’s Disease Research
Center [Knight-ADRC] and NIA-LOAD), Mayo Clinic
Jacksonville in Florida (Mayo), Indiana University School
of Medicine (Indiana), Washington Heights-Inwood Com-
munity Aging Project (WHICAP), and the Emory Univer-
sity (Emory). All of these individuals were self-reported
AAs. Characteristics of the individual cohorts are listed in
Table 2. The overall study design is depicted in Figure 2.
Further details are provided in the Additional file 7:
Supplementary methods and Additional file 8: Tables
S1-S6.

Additional files

Additional file 1: Tables S7-S8. TREM2 variants discovered and
validated in African Americans. Tables show the variants discovered
and validated in the (Table S7). Washington University in St. Louis and
(Table S8). Mayo Clinic Florida cohorts. NA represents not applicable.
The Fisher’s exact test was used to calculate p-values and odds-ratio
(OR) for each variant using the default commands in PLINK. Multivariate
logistic regression was performed to evaluate the association of p.T96K,
p.W191X and p.L211P with AD risk adjusting for age, gender, and APOE
genotype.

Additional file 2: Tables S9-S11. TREM2 variants genotyped in African
Americans. Tables show the variants genotyped at (Table S9). Indiana
University (Table S10). WHICAP, and (Table S11). Emory University. NA
represents not applicable. The Fisher’s exact test was used to calculate
p-values and odds-ratio (OR) for each variant using the default commands
in PLINK. Multivariate logistic regression was performed to evaluate the
association of p.W191X and p.L211P with AD risk adjusting for age, gender,
and APOE genotype.

Additional file 3: Figure S1. Forest plot for p.W191X odds ratios across
cohorts. Forest plot of multivariate logistic regression results generated
using the R package ‘rmeta’.

Additional file 4: Figure S2. Forest plot for p.L211P odds ratios across
cohorts. Forest plot of multivariate logistic regression results generated
using the R package ‘rmeta’.

Additional file 5: Table S12. Conditional analyses for p.W191X and p.
L211P. Conditional association testing was performed to evaluate the
association of p.W191X and p.L211P with AD risk adjusting for age,
gender, APOE genotype, cohort, and the conditioning SNP.

Additional file 6: Table S13. TREM2 variants that are present in the
African Americans according to NHLBI EVS. The amino acid change, exon
location, dbSNP reference number, GVS function category, minor allele
frequency (MAF) in 2,203 African Americans, and PolyPhen2 functional
prediction of TREM2 variants are listed in each row. The amino acid
position is annotated based on the longest protein isoform. &Rs2234258
(p.W191X) is only present in the coding region of the shortest isoform of
TREM2 (ENST00000338469). Variants observed in the in 202 AD cases and
136 controls sequenced at Washington University, or in the 179 AD cases
sequenced at Mayo Clinic, are shown in bold font. EVS does not list 5 of
the missense variants (p.T66M, p.D87N, p.T96M, p.A105V, and p.E202D)
that were observed in our study sample.

Additional file 7: Supplementary Methods. Extended methods
detailing the design, cohorts, and statistical methods applied.

Additional file 8: Tables S1-S6. Demographic characteristics of African
Americans. Tables detail the demographic characteristics of the various
cohorts. Sample size (N), mean, standard deviation and range for age in
years, percentage of female subjects and percentage of subjects that
carry at least one APOE-ε4 allele for the AD cases and cognitively normal
elderly controls from (Table S1). Knight-ADRC, (Table S2). NIA-LOAD,
(Table S3). Mayo Clinic, (Table S4). Indiana University, (Table S5).WHICAP,
(Table S6). Emory University. Ages are age-at-onset for ADs and age of last
evaluation for controls.
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