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Abstract

Alzheimer's disease (AD) is the most common cause of dementia in those over the age of 65. While a numerous of
disease-causing genes and risk factors have been identified, the exact etiological mechanisms of AD are not yet
completely understood, due to the inability to test theoretical hypotheses on non-postmortem and patient-specific
research systems. The use of recently developed and optimized induced pluripotent stem cells (iPSCs) technology
may provide a promising platform to create reliable models, not only for better understanding the etiopathological
process of AD, but also for efficient anti-AD drugs screening. More importantly, human-sourced iPSCs may also provide a
beneficial tool for cell-replacement therapy against AD. Although considerable progress has been achieved, a number of
key challenges still require to be addressed in iPSCs research, including the identification of robust disease phenotypes in
AD modeling and the clinical availabilities of iPSCs-based cell-replacement therapy in human. In this review, we highlight
recent progresses of iPSCs research and discuss the translational challenges of AD patients-derived iPSCs in disease
modeling and cell-replacement therapy.
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Background
Alzheimer’s disease (AD) is the most common form of
dementia that begins with short-term memory deficits and
culminates in total loss of cognition and executive func-
tions. The formations of amyloid-β (Aβ) plaques and
intracellular neurofibrillary tangles (NFTs), two important
pathological hallmarks of AD, have been linked to the syn-
apse loss, neuronal degeneration and subsequent dramatic
brain atrophy of AD patients [1, 2]. Although these clin-
ical features and pathological profiles of AD have been
well documented and various animal models containing
AD-related genetic backgrounds have been developed, the
etiological mechanisms for AD are still far from being

fully understood and effective therapeutic strategies for
AD are still urgently needed.
Dozens of drugs and therapeutic strategies attempting

to slow or halt neuronal loss and cognitive deficiency of
AD are being investigated around the world [3]. How-
ever, only five pharmacological agents have been
approved for clinical AD treatment by the Food and
Drug Administration, including cholinesterase inhibitors
tacrine, donepezil, galantamine, rivastigmine and N-
methyl-D-aspartate (NMDA) receptor antagonist mem-
antine [4]. Unfortunately, all these currently available
pharmacological therapeutics only relieve symptoms
without affecting the major pathological characteristics
of AD. Moreover, the effectiveness of these agents varies
from person to person as evidenced by a moderate effi-
ciency in no more than 20 % of patients and tolerance,
noncompliance and side-effects in more than 60 % of
treated patients [5].
Several theoretical hypotheses have been raised for elu-

cidating the pathological mechanisms of AD, including
amyloid-cascade hypothesis [6], tau hypothesis [7],
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mitochondrial cascade hypothesis [8], oxidative stress hy-
pothesis [9] and neuroinflammation hypothesis [10].
Among them, amyloid-cascade hypothesis is widely ac-
cepted as the centerpiece of AD pathology, in which Aβ is
recognized as the initiating factor in AD. Previous studies
have reported that Aβ plaque deposition, an early critical
event of AD, triggers the downstream features of AD
including tangles formation, oxidative stress, neuroinflam-
mation and neuronal loss. Several new candidates target-
ing Aβ have been tested in clinical trials in past years.
Unfortunately, all of these therapeutic candidates failed to
improve the cognitive and functional ability of AD
patients, yet caused serious side-effects [11, 12]. There-
fore, a better understanding of the upstream mechanisms
of AD pathology is urgently required for the discovery of
novel disease-modifying therapeutic strategies.
Till now, at least 3 causal genes and 22 risk genes have

been identified to be involved in the pathogenesis of AD,
including amyloid precursor protein (APP), presenilin-1/
2 (PSEN1/2) [5, 13], apolipoprotein E (APOE) [14],
ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU,
CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1,
INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B,
SORL1, SLC24H4-RIN3, and ZCWPW1 [15]. However,
genetic factors could only partially explain the risk of
AD. The notion widely accepted to date is that the onset
of AD is most likely the consequence of complicated
interactions of multiple genetic and non-genetic factors
(Fig. 1) [16]. Several non-genetic risk factors have been
proposed, including aging, cerebro-cardiovascular dis-
eases, metabolic disorders, traumatic brain injury,
sleep disorders, chronic hypoxia and environmental
toxins [3, 17–23]. However, the mechanisms underlying
them still remain largely unknown, due to the lack of non-
postmortem and AD patient-specific research models.
The identification of AD causal genes resulted in the

generation of more than 150 transgenic AD mouse
models, by over-expressing one or more mutated genes
such as human APP, PSEN1/2, or Tau [24]. These trans-
genic models have greatly advanced the understanding
of AD pathogenesis and promoted the findings of novel
therapeutic targets and strategies for AD treatment.
However, none of these transgenic models can reflect all
pathogenic and clinical features of AD. Different combi-
nations and extents of gene mutations led to a great
variety of AD phenotypes [25, 26]. Although Aβ plaques
and cognitive impairment were observed in almost all
animal models, NFTs could only be generated by lines
over-expressing human tau protein. Cholinergic neur-
onal loss can be observed in several lines, but massive
neuronal loss in brain is rarely observed in these animal
models. Based on these, in the current stage transgenic
animal models cannot fully recapitulate the progress of
human AD. In addition, the transgenic animals carrying

autosomal dominant familial AD (FAD) genes may have
limitations in modeling sporadic AD (SAD) [27, 28].
Therefore, more representative models are needed for
facilitating the fundamental AD research and exploring
more efficient therapeutic strategies for AD treatment.
The recently developed and optimized induced pluri-

potent stem cells (iPSCs) technology may provide an
appealing access to overcome these challenges in AD
research. iPSCs can be generated from somatic cells by
using several key transcription factors for pluripotency.
iPSCs are in general identical to embryonic stem cells
(ESCs) with the ability to self-renew unlimitedly and dif-
ferentiate into all cell types [29–31]. Additionally,
human iPSCs derived from patients’own somatic cells
may serve as a sufficient cell source for clinical transplant-
ation therapy (also termed as cell-replacement therapy),
which can efficiently prevent immunologic rejection and
the ethical issues raised by the use of ESCs [32, 33]. More
importantly, human iPSCs derived from either FAD or
SAD patients’ somatic cells contain a patient-specific
pathogenic background, therefore, can provide a promis-
ing avenue for AD modeling, which bridges the gap
between animal models and clinical testing. This strategy
is extremely useful for the mechanism understanding of
AD pathogenesis, clinical identifying of therapeutic targets
and drug screening of the novel therapeutic candidates
against AD (Fig. 2). In this review, we update the recent
progress of iPSCs research, and discuss its potential
applications, as well as the major challenges and future
directions in disease modeling and cell-replacement
therapy of AD.

Progress of iPSCs research
In 2006, Yamanaka and colleagues found mouse fibro-
blast cells can be reprogrammed into iPSCs by using 4
transcription factors including Octamer-binding tran-
scription factor 4 (Oct4), sex determining region Y-box
2 (Sox2), Kruppel-like factor 4 and cMyc [30]. In 2007,
this technology was successfully applied in human som-
atic cells [29]. Additionally, a combination of Oct4,
Sox2, NANOG and LIN28 has also been demonstrated
to induce iPSCs from human somatic cells [29, 31]. After
the first discovery of mouse or human iPSCs, consider-
able efforts have been made to develop or optimize this
technology, including reprogramming cells by using
fewer or newly defined factors and more efficient deliv-
ery systems.
Oct4 inhibits the expression of differentiation-related

genes in ESCs [34–36] and has been reported to be suffi-
cient to direct the reprogramming of somatic cells into
iPSCs [37, 38]. Moreover, Shu et al. have found that
lineage specifiers, which act as pluripotency rivals to
suppress ESCs identity, can induce mouse fibroblasts
into iPSCs [39]. Lineage specifiers that are involved in
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Fig. 2 Potential applications of iPSCs technology in AD modeling, drugs screening and cell-replacement therapy

Fig. 1 Schematic diagram of causative or risk factors for AD pathogenesis
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mesendodermal specification (such as GATA3, GATA6,
and SOX7) and ectodermal specification (such as SOX1,
SOX3, and GMNN) can synergistically induce pluripo-
tency in the absence of Oct4 and Sox2, suggesting a “see-
saw effect” of the lineage specifiers in cell reprogramming.
Additionally, more and more novel reprogramming
factors have been identified as pluripotency-associated
factors or maternal factors, such as PR domain-containing
14, Sall4, Esrrb, Utf1, Tet1, Tet2, Gli-similar protein 1 and
inhibitors of differentiation 3 [40–48].
Manipulations of microRNAs (miRs), such as miR-

291-3p, miR-294 and miR-295, have been reported to
increase the efficiency of reprogramming without the
presence of cMyc [49]. Anokye-Danso and colleagues
have also found that miR-302-367 can replace traditional
reprogramming factors to reprogram mouse and human
somatic cells into iPSCs with higher efficiency [50].
Besides the utilization of pluripotency transcription

factors, the induction of iPSCs has been extended to
involve various kinds of donor cells, including fibro-
blasts, glias, neural progenitors, human keratinocytes,
liver and stomach cells, pancreatic-β cells, mature B
lymphocytes, human amniotic fluid-derived cells, as well
as cells in blood and urine [51–56].
Additionally, the delivering strategies for inducing iPSCs

have been improved. The retroviral or lentiviral vectors
were routinely used to integrate the reprogramming genes
into the host genome to induce iPSCs [30, 57]. Viral deliv-
ery system are efficient and reproducible in reprogram-
ming, however, the random integration of transgenes into
genome increases the risk of tumor formation and may
cause mortality in chimeric and progeny mice derived
from iPSCs [58]. Transfection of linear DNA by polycis-
tronic vectors using liposomes or electroporation can
avoid viral integration, but the reprogramming efficiency
of these methods is much lower than viral delivery. The
piggyBac transposon delivery system is less risky because
the integration of non-viral constructsis more stable than
virus vectors [59]. Furthermore, many viral integration-
free systems for iPSCs generation have been established,
such as adenovirus, Sendai virus, minicircle vector, epi-
somal vectors, and direct protein delivery [60–65].
Importantly, Hou et al. have reported that small-mole-
cules, such as VC6T plus FSK, can replace “master
genes” Sox2 and Oct4 to induce cell reprogramming
[65, 66]. This chemical reprogramming strategy is rela-
tively simple and less time-consuming, and has promis-
ing potential in generating functional desirable cell types
for clinical applications.

Application of iPSCs in AD modeling
The rapid development of iPSCs technology promotes
the application of iPSCs in the research of neurodegen-
erative diseases. Since 2008, over 50 literatures have

been published to demonstrate the neurodegenerative
diseases modeling by using iPSCs, majorly generated
from familial patients but a few from sporadic patients
[32]. Among them, several research groups have
reported the usage of iPSCs in AD modeling, which pro-
vide proof-of-principle for modeling patient-specific AD
pathology by using iPSCs and recapitulate several patho-
logical features of AD in vitro (Table 1).
Yagi et al. firstly generated iPSCs from AD patients

carrying familial mutations in PSEN1 (A246E) and
PSEN2 (N141I) and reported that these FAD-derived
iPSCs had an increased Aβ42 production and an elevated
ratio of Aβ42/Aβ40 [67]. Then, Israel et al. generated
iPSCs lines from two SAD patients (named as sAD1/
sAD2) and two FAD patients with a duplication of APP
(APPDp) [68]. They found that neurons derived from
APPDp-iPSCs line and sAD2-iPSCs line have significantly
higher levels of Aβ40, increased phosphorylation of tau
protein (at Thr 231) together with an elevated level of
active glycogen synthase kinase-3β (aGSK-3β). Addition-
ally, neurons from those AD-derived iPSCs (AD-iPSCs)
accumulated large RAB5-positive early endosomes, which
is consistent with the findings from the neurons of AD
patients [69]. More interestingly, treatment of the neurons
with β-secretase inhibitors (BSI), but not γ-secretase
inhibitors, could significantly reduce the levels of
phospho-tau (Thr 231) and aGSK-3β, while γ-secretase
inhibitors only reduced the level of Aβ40, suggesting that
APP proteolytic processing, but not Aβ40, had a direct
relationship with GSK-3β activation and tau phosphoryl-
ation in human neurons. Consistent with these findings,
Jang et al. and Shi et al. have also generated neurons
from iPSCs derived from primary fibroblast of AD pa-
tients [70, 71] and found these cells could recapitulate
AD pathogenic process such as Aβ42 and hyperpho-
sphorylated tau and could be used for screening new
drugs and therapeutic regimens.
Sproul et al. also have found a higher Aβ42/Aβ40 ratio

in the neural progenitor cells (NPCs) derived from AD-
iPSCs harboring PSEN1 A246E or M146L mutations
[72]. Moreover, they identified 14 genes differentially-
regulated in PSEN1 NPCs molecular profiling. Among
these genes, GFRA3, ISL1, DLX1, SEMA3B, and ERBB3
showed differential expression in late onset AD/Inter-
mediate AD brains.
Kondo et al. generated seven AD-iPSCs lines, includ-

ing three lines from a patient carrying APP E693 dele-
tion (APP E693d), two lines from a patient harboring
APP V717L mutation (APP V717L), and two lines from
a SAD patient [73]. The authors found that Aβ oligo-
mers accumulated in neurons derived from APP E693d-
iPSCs and in neurons and astrocytes derived from one
of the two SAD-iPSCs lines, which could be reduced by
BSI. Furthermore, they found that the stress responses
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in the AD neural cells were alleviated by BSI and doco-
sahexaenoic acid treatment. This study illustrates the
possible application of patient-specific iPSCs for screen-
ing anti-AD drugs and classifying AD patients.
Muratore et al. generated four iPSCs lines from two

FAD patients carrying APP V717I mutation and differ-
entiated them into neurons expressing forebrain neuron
marker [74]. Both β- and γ-secretase cleavage of APP
were affected by this mutation. Elevated β-secretase
cleavage of APP led to an increased level of both sAPPβ
and Aβ, while the alteration of the initial cleavage site of
γ-secretase resulted in an increased Aβ42 and Aβ38.
Moreover, they found that the levels of total and phos-
phorylated tau were increased in neurons derived from
AD patient. Furthermore, Aβ-specific antibodies could
reverse the phenotype of increased total tau in AD-
iPSCs derived neurons. These findings indicate that the
tau-related changes are relevant to Aβ phenotype and
the increased tau might be a consequence of Aβ gener-
ation, which is consistent with the amyloid-cascade
hypothesis of AD.
Furthermore, forebrain cholinergic neuron (FBCN)

loss is directly relevant to the memory and cognition
deficits in AD. Therefore, generation of FBCNs from AD
patient-specific iPSCs is crucial for disease modeling in
vitro and for the development of novel AD therapies.
Based on this, Duan et al. have recently reported that

FBCNs derived from SAD-iPSCs showed typical AD bio-
chemical features as evidenced by an increased Aβ42/
Aβ40 ratio and a higher susceptibility to glutamate-
mediated cell death [75].
Down syndrome (DS) patients with early-onset

dementia share similar neurodegenerative features with
those of AD. Chang et al. have recently found that accu-
mulated amyloid deposits, tau protein hyperphosphory-
lation and tau intracellular redistribution emerged
rapidly in DS-iPSCs-derived neurons within 45 days but
not in normal ESCs-derived neurons, suggesting DS-
iPSC-derived neural cells can serve as an ideal cellular
model of DS and AD and have potential for high-
throughput screening of therapeutic candidates [76].

Challenges and future perspectives of iPSCs in AD
disease modeling
The above mentioned research findings reveal several
pathological features of AD, including Aβ generation
and tau-phosphorylation, in AD-iPSCs derived from
FAD and SAD patients, indicating the potential applica-
tion of iPSCs technology in AD modeling and drug
screening. However, there are still several concerns
regarding AD-iPSCs models.
First of all, although iPSCs could serve as a promising

avenue for disease modeling, the molecular principles
for this technique, particularly in human cells, still

Table 1 iPSCs-based AD modeling

Cell type AD models Phenotypes Significance Ref

FAD-iPSCs Fibroblasts of FAD
patient with mutations
in PS1 and PS2

FAD-iPSCs-derived neurons have
increased Aβ42 secretion; responds
to γ-secretase inhibitors and modulators

Recapitulating the molecular pathogenesis
of mutant PS; identification and validation
of candidate drugs

[67]

FAD- and
SAD-iPSCs

Fibroblasts of FAD
patient with mutations
in APP; sporadic AD

AD-iPSCs-derived neurons exhibited
higher levels of Aβ, pTau, and active
GSK-3β; β-secretase inhibitors caused
significant reductions in pTau and
active GSK-3β levels

The first SAD iPSC model; Demonstrating
the direct relationship between APP
processing in GSK-3β activation and
tau phosphorylation

[68]

AD-iPSCs Fibroblasts from AD
patient

AD-specific iPSCs lines Exploring AD pathologies; screening
new drugs and therapeutic regimens

[70]

AD-iPSCs Fibroblast of Down
syndrome patients

Neurons generated from Down
syndrome patients-iPSCs developed
AD pathologies

Recapitulating AD pathogenic process
including Aβ42 and hyperphosphorylated
tau

[71]

FAD-iPSCs PSEN1 mutant
fibroblasts

produced greater ratios of Aβ42 to
Aβ40; 14 genes differentially-regulated

Identify novel candidate genes during
AD pathology

[72]

FAD-iPSCs Human dermal
fibroblasts

Aβ oligomers accumulation; elevated
endoplasmic reticulum (ER) and
oxidative stress;

Illustrating how patient-specific iPSCs
can be useful for analyzing AD
pathogenesis and evaluating drugs.

[73]

SAD-iPSCs

FAD-iPSCs Human fibroblast
carrying APP
mutation (V717I)

Increased APP expression and levels
of APPsβ, Aβ; increased Aβ42 and Aβ38;
increase in levels of total and
phosphorylated Tau

Demonstrating the direct casual
relationship between elevated Aβ
and hyperphosphorylated tau using
Aβ neutralizing antibodies, for the
first time;

[74]

Providing a model system for testing
therapeutic strategies in the cell types
most relevant to disease processes
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remain poorly understood due to donor-to-donor vari-
ability and intercellular heterogeneity. In the study from
Israel et al., only one of the two SAD-iPSCs lines has the
same phenotypes as the APPDp-iPSCs line. Similarly,
Kondo et al. have also found that seven AD-iPSCs lines
with APP E693 deletion or APP V717L mutation or
SAD did not always recapitulate the same phenotypes
[73]. These inconsistencies might suggest that although
there are similar mechanisms underlying the pathogen-
esis of FAD or SAD, a larger sample size is still required
to investigate the comprehensive and robust heterogen-
eity of AD phenotypes in future study. In addition,
although AD patient-derived human neurons have
shown elevated levels of toxic Aβ species and phosphor-
ylated tau, they also could not recapitulate Aβ plaques
or tau tangles. One of the possible reasons for this might
be the lack of a proper cell culture system, which mimics
the in vivo condition and provides a better microenvir-
onment to achieve enough pathogenic Aβ accumulation,
as observed in human AD patients and transgenic AD
mouse models. Recently, Kim et al. have found that
robust Aβ and tau pathologies could be achieved in a 3-
dimension human neural cell culture models [77].
Although this model was based on genetically engi-
neered human neural stem cell line, not iPSCs, it may
provide a promising tool for human AD iPSCs models.
Secondly, the neural cells differentiated from iPSCs

displayed AD pathological hallmarks in less than two
months, suggesting that disease-related cells may be
more susceptible to display the hallmarks of disease in
cell culture dishes than in patients’ brains. However,
there also remains the question that whether the one or
two cell types differentiated from iPSCs can represent all
complicate phenotypes of AD. In addition, the cells
exhibited the pathological changes of AD, but synapse
loss or neuronal degeneration was rarely observed. It has
been reported that AD is a complex disease that affects
both neuronal and glial activities and glia participates in
Aβ clearance and inflammation in AD [78]. Therefore,
further studies of glial cells derived from AD-iPSCs can
facilitate the discovery of the exact mechanisms under-
ling AD pathogenesis.
Thirdly, in these studies of AD-iPSCs, iPSCs derived

from healthy individuals or family members were used
as controls, which may have totally different genetic
background from the AD-iPSCs. This kind of controls is
not the most appropriate approach in disease modeling
assays. Hence, isogenic iPSCs derived from AD-iPSCs, in
which the mutations have been corrected to wild-type,
are the most appropriate controls. Nowadays, isogenic,
mutation-corrected control cell lines generated by tran-
scription activator-like effector nucleases (TALENs) or
clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (Cas) mediated

genomic editing technology has been applied in human
diseases, such as ALS, and tumors [79, 80].
Overall, AD-iPSC lines from more AD patients and

further studies using both AD-iPSC-derived neuron and
glial cells and isogenic controls can provide tools to dis-
cover more accurate features and mechanisms of AD.

iPSCs-based cell replacement therapy for AD: the
mechanisms and rationales
iPSCs have great potential in cell transplantation therapy
of neurodegenerative diseases including AD. Transplant-
able neural progenitors or neurons can be generated
from ESCs and iPSCs [81, 82]. NPCs derived from ESCs
or iPSCs can be further differentiated into neurons,
astrocytes or oligodendrocytes, which provide promising
aspect for cell-replacement therapy of various neurode-
generative disorders including AD.
The dysfunction of neurogenesis has been found in

AD mouse models, indicating that the worsened imbal-
ance between neurogenesis and neuronal loss may con-
tribute to the pathogenesis of AD [83]. It is generally
accepted that adult neurogenesis primarily occurs in two
sites important for learning and memory, the subventri-
cular zone (SVZ) of the lateral ventricles and the subgra-
nular zone (SGZ) of the dentate gyrus (DG) of the
hippocampus. Wang et al. have reported that AD trans-
genic mice harboring PSEN1P117L show a decreased
survival of NPCs, leading to a reduced production of
new neurons. In addition, the reduced adult neurogen-
esis in DG has been suggested to be correlated with an
impaired contextual fear conditioning in mouse [84–87].
In APP V717F mice, an age-dependent decrease of cell
proliferation in SGZ of DG was also observed [88].
Research reports suggest that neurogenesis was signifi-
cantly enhanced as a self-repairing mechanism to com-
pensate for the early onset of neurodegeneration; however,
the survival of newly generated neurons was impaired fol-
lowing neurodegeneration progression [89]. Interestingly,
although the cellular composition and morphological
organization of the SVZ in human and non-human pri-
mates differ from those of rodents [90, 91], the prolifera-
tion and migration of NPCs in the SVZ of young APP
transgenic mice have also been reported to be greatly
decreased [92], suggesting that Aβ plaques might be in-
volved in the impaired neurogenesis in AD mouse model.
However, it has been reported that the decreased NPCs
and neuroblasts as wells as severely impaired proliferation
and differentiation of NPCs occurred preceding the onset
of amyloid deposition and memory impairment in 2-
month-old APPswe/PSEN1ΔE9 mice or triple transgenic
mice carrying APPswe, PSEN1-M146V and tau-P301L
mutations [93]. These findings suggest that progressive
neuronal loss and impaired neurogenesis may be import-
ant pathological events of AD.
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Previous studies have found that transplanted NSCs dif-
ferentiate into mature cell types and improve cognitive
ability of AD animal models via various mechanisms, with
or without the involvement of Aβ or tau pathologies. For
instance, NSCs have been reported to rescue cognitive
functions and promote synaptogenesis without altering
Aβ or tau pathologies in AD mouse models [94–96].
Moreover, NSCs have also been found to attenuate the
expression of proinflammatory cytokines and neuronal
loss in AD model [97]. In contrast to these research
reports, Lee et al. have revealed that human NSCs trans-
plantation reduced tau phosphorylation, down-regulated
BACE1 expression and Aβ production via Akt/GSK3β
signaling, and decreased the expression of inflammatory
mediators through deactivation of microglia [98]. As a
primary source of NSCs, iPSCs, especially human-
derived iPSCs, may provide a promising strategy for
cell-replacement therapy of AD.
It is likely that the transplantation of NSCs can provide

not only a direct cell-replacing strategy for AD therapy,
but also can be used as vehicles for the delivery of poten-
tial therapeutic agents, including neprilysin, insulin-
degrading enzyme, plasmin and cathepsin B, to reverse
AD pathologies [99, 100]. It is suggested that the future
NSCs- or iPSCs-based cell therapy in AD should focus on
such indirect mechanisms [101–103].

iPSCs-based cell replacement therapy for AD:
hints from other CNS disorders
iPSCs have great potential as cell source in cell transplant-
ation therapy of neurodegenerative diseases [104, 105].
One of the main purposes of iPSCs-based cell replacement
therapy in AD and other neurodegenerative diseases is to
produce new neurons to replace those lost or function-
deficient cells during disease progression or to produce
glial cells to protect neurons from ongoing degeneration.
Data from in vivo studies suggest that iPSCs-derived neu-
rospheres were able to survive and differentiate into neu-
rons, astrocytes, and oligodendrocytes, after transplantation
into injured mouse spinal cord [106]. In addition, previous
research report has also indicated that after transplant-
ation into the fetal mouse brain, NPCs derived from
mouse iPSCs migrate into various brain regions and differ-
entiate into glia and neurons [107], and thus are capable
to integrate into preexisting functional neuronal circuitries
in the CNS or compensate the degenerative neurons. Elec-
trophysiological experiments and morphological observa-
tions demonstrate that the grafted neurons display normal
neuronal activity and are functionally integrated into the
host brain. All these findings support the notion that
iPSCs- or iPSCs derivatives-based cell replacement ther-
apy could be efficiently used to treat neurodegenerative
diseases. Indeed, several lines of studies have tested this

idea in experimental models of Parkinson’s disease (PD)
and amyotrophic lateral sclerosis (ALS).
It has been reported that transplanted neural stem

cells in parkinsonian rat striatum can release and re-
uptake dopamine and alleviate PD symptoms [108]. Hu-
man iPSCs-derived neurons can improve the functional
defects of rotational asymmetry in PD rat model after
transplantation [109]. Autologous iPSCs-derived dopa-
mine neurons can provide long-term functional recovery
in monkey model of PD [84]. In addition, glial-rich
neural progenitors derived from human iPSCs can im-
prove lifespan of ALS mice after being transplanted into
the lumbar spinal cord [85].
As for AD, Fujiwara et al. have reported that the

spatial memory of AD mice was improved significantly
after grafted with human iPSCs-derived neural progeni-
tors [110]. In addition, Huang’s group has found that
after transplantation of the embryonic medial ganglionic
eminence (MGE)-derived interneuron progenitors into
the hippocampal hilus of aged apoE4-KI mice, the trans-
planted cells developed into mature interneurons, and
the neurons functionally integrated into the hippocam-
pal circuitry and rescued learning and memory [111].
Moreover, Nicholas et al. found that MGE-like progeni-
tors derived from both ESCs and iPSCs could be in-
duced to differentiate into GABAergic interneurons and
displayed mature physiological properties in mouse brain
up to 7 months post-transplantation [112]. These re-
search findings indicate that transplanted human iPSCs-
derived cells can functionally rescue pathological
changes in the brains of AD patients. All these preclin-
ical progresses in the investigation of cell transplantation
in neurodegenerative diseases may provide proof-of-
concept for the final clinical translation of iPSCs in ther-
apy of AD.
Although great achievements have been made for

iPSCs-based cell replacement therapy, one major chal-
lenge is teratoma formation. It has been demonstrated
in the mouse system that iPSCs-derived chimeras fre-
quently develop tumors, which should be carefully eval-
uated after transplantation before clinical application.
Takahashi et al. calculated that approximately 20 % of
the mice derived from iPSCs develop tumors [113].
Transgene reactivation and incomplete reprogramming
are considered as the primary causes of tumorigenesis
[114]. In order to reduce the risk of tumor formation
that limits the clinic application of iPSCs, many studies
have provided strategies. Wang et al. have introduced a
mifepristone-regulated caspase-1 expression system to
selectively eliminate tumor cells derived from undiffer-
entiated ESCs but not differentiated dopamine neurons
[115]. Cui et al. have identified that the suppression of
canonical wingless-type MMTV integration site family
(WNT) signaling pathway can reduce the tumorigenicity
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and substantially improved retinal integration of ESCs-
derived retinal progenitor cells transplanted in mice
[116]. In addition, Nori et al. have recently suggested
that integration-free iPSCs should be chosen to avoid
tumorigenesis [117]. Overall, these progresses of iPSCs
research can provide new avenue for the clinical transla-
tion of cell transplantation therapy against various neu-
rodegenerative diseases including AD.

Conclusion
AD patient-specific iPSCs-derived neurons or glia cells
can recapture not only familial, but also sporadic form of
AD. Moreover, iPSCs provide unique platforms to detect
the early-disease phenotypes during neurogenesis or neu-
rodegeneration which may point towards underlying
pathogenic mechanisms of AD. In addition, isogenic iPSCs
of AD-iPSCs can be obtained by TALEN- or CRISPR/Cas-
mediated genetic repairing technology. Genetically
repaired AD-iPSCs can serve as more appropriate control
cells for disease modeling and cells transplantation.
Altogether, even though there are several challenges in the
clinical usage of iPSCs technology, the recent promising
achievements in this field will contribute significantly for
exploring molecular mechanisms of AD and promoting
clinical AD therapy.
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