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Abstract

Background: Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS)
and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused
mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial
oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that
alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of
mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative
phosphorylation impairment associated with respiratory chain defects and that these effects were caused by
mitochondrial localization of the mutant protein. Here, we investigated the presence of bioenergetic defects in the
brain of transgenic mice expressing human mutant TDP-43 (TDP-43"'>" mice), patient derived fibroblasts, and
human cells expressing mutant forms of TDP-43.

Methods: In the brain of TDP-43"3">T mice, TDP-43 mutant fibroblasts, and cells expressing mutant TDP-43, we
tested several bioenergetics parameters, including mitochondrial respiration, ATP synthesis, and calcium handling.
Differences between mutant and control samples were evaluated by student t-test or by ANOVA, followed by
Bonferroni correction, when more than two groups were compared. Mitochondrial localization of TDP-43 was
investigated by immunocytochemistry in fibroblasts and by subcellular fractionation and western blot of
mitochondrial fractions in mouse brain.

Results: We did not observe defects in any of the mitochondrial bioenergetic functions that were tested in TDP-43
mutants. We detected a small amount of TDP-43"3">" peripherally associated with brain mitochondria. However,
there was no correlation between TDP-43 associated with mitochondria and respiratory chain dysfunction. In
addition, we observed increased calcium uptake in mitochondria from TDP-43"3">" mouse brain and cells
expressing A315T mutant TDP-43.

Conclusions: While alterations of mitochondrial morphology and dynamics in TDP-43 mutant neurons are well
established, the present study did not demonstrate oxidative phosphorylation defects in TDP-43 mutants, in vitro
and in vivo. On the other hand, the increase in mitochondrial calcium uptake in A315T TDP-43 mutants was an
intriguing finding, which needs to be investigated further to understand its mechanisms and potential pathogenic
implications.
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Background

Mutations in transactivation response element DNA-
binding protein 43 (TDP-43) cause rare forms of familial
amyotrophic lateral sclerosis (fALS) and frontotemporal
lobe dementia (FTLD) [1, 2]. The incidence of TDP-43
mutations is estimated at approximately only 4% of all
familial cases of ALS. However, abnormal TDP-43
cytosolic aggregates in motor neurons are a common
pathological feature of the majority of sporadic and
familial ALS autopsies [3], suggesting that even in the
absence of mutations, TDP-43 may be involved in
disease pathogenesis.

TDP-43 is a nuclear riboprotein involved in regulation
of RNA splicing [4]. Under physiological conditions,
TDP-43 localization is predominantly nuclear, but under
stress TDP-43 translocates to the cytoplasm, where it
localizes to stress granules. Mutant TDP-43, or even
wild type protein when it is overexpressed, can form
ubiquitin-positive aggregates in the extra-nuclear cell
compartment.

In ALS-FTLD, mutant TDP-43 is depleted from the
nucleus and accumulates in the cytosol, where it forms
aggregates of phosphorylated protein [3]. Therefore, the
pathogenic mechanisms of mutant TDP-43 may include
both loss of nuclear function and gain of extra-nuclear
toxic functions. Indeed, numerous lines of evidence sup-
port a role for extra-nuclear TDP-43 in ALS-FTLD [5,
6], and there is a strong possibility that TDP-43 oligo-
mers spread from cell to cell in a prion-like fashion [7].

Mitochondria have been suggested to be one of the
multiple potential targets of TDP-43 extra-nuclear mis-
localization and aggregation, since mitochondrial
dynamics and distribution has been described in cellular
and animal models of the disease. In particular, it was
shown that both TDP-43 overexpression and suppres-
sion impair mitochondrial movement in cultured neu-
rons and that mutant TDP-43 co-localizes with
mitochondria [8]. Furthermore, mitochondrial accumu-
lation and aggregation was found in various TDP-43 ani-
mal models, including the transgenic mice expressing
C-terminal fragments [9] or full-length protein [10]. In
these models, mitochondrial aggregates in the cell bodies
of motor neurons were accompanied by depletion of
mitochondria in motor terminals and neuromuscular
junctions, suggesting that mitochondrial axonal trans-
port was impaired.

Mitochondrial axonal transport defects were identified
in various TDP-43 animal models, from flies [11] to
mice [12], and are likely to contribute to mitochondrial
mislocalization and possibly to neuronal functional
defects and degeneration. Interestingly, cytosolic
localization of TDP-43 has also been linked to alter-
ations in the interactions between mitochondria and
endoplasmic reticulum [13], leading to functional
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defects, predominantly in intracellular calcium handling,
which could also have important implications for
ALS-FTLD pathogenesis.

Recently, it was proposed that mutant cytosolic TDP-
43 gains access to the mitochondrial matrix through a
dysregulated import mechanism, and that TDP-43 in the
matrix impairs mitochondrial respiratory chain activity
by downregulation of complex I biosynthesis [14].

Based on the growing body of evidence suggesting that
mitochondria are targeted by mutant TDP-43, we
decided to perform a thorough investigation of mito-
chondrial bioenergetics in multiple model systems,
ranging from mutant TDP-43 transgenic mice to
patient-derived cells harboring TDP-43 mutations, to
asses the presence of mitochondrial dysfunction.

Methods

Chemical reagents

All reagents were from Sigma-Aldrich (St. Louis, MO)
unless otherwise stated.

Animals

We used the strain B6;CB-Tg(Prnp-TARDBP*A315T)95-
Balo/] of TDP43A315T transgenic mice (from The Jackson
Laboratory, Bar Harbor, ME). In all experiments, N-Tg
littermates were used as controls.

The criterion for determining disease onset was the
development of abnormal hind-limb extension (clasp-
ing). The criterion for survival was the inability of the
mouse to right itself, when placed on its side (loss of
righting reflex).

Bioenergetics and calcium uptake measurements in brain
mitochondria

Forebrain mitochondrial fractions were freshly prepared
from TDP43**""T transgenic mice and age and sex
matched N-Tg littermates by differential centrifugation
of homogenates on a discontinuous Percoll™ gradient as
previously described [15, 16]. Mitochondria were
obtained from the non-synaptosomal gradient layer and
washed 3 x in buffer containing 75 mM sucrose,
225 mM mannitol, 10 mM HEPES; 2 mM EDTA pH 7.4.

ATP synthesis was measured in purified brain mito-
chondria using a luciferin-luciferase approach, as previ-
ously described [17]. Glutamate (5 mM) and malate
(2 mM) or succinate (5 mM) plus rotenone (1 uM) were
used as oxidative substrates. Measurements were carried
out by luminometry.

ROS emission was measured as Amplex Red (Thermo
Fisher Scientific, Waltham, MA) fluorescence (555 nm
excitation and 581 nm emission wavelengths) in the
presence of exogenous horseradish peroxidase and mito-
chondrial HyO, as described [18, 19]. Briefly, 100 pg
mitochondria were added to 1 mL incubation buffer
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(125 mM KCl, 20 mM HEPES, 0.2 mM EGTA, 2 mM
KH,PO,4, 200 pg/mL BSA, 1 pM Amplex Red, 4 U
horseradish peroxidase, pH 7.2). Standard curves were
used to calculate H,O, emission rates after sequential
addition of substrate (5 mM glutamate, 2 mM malate),
1 uM rotenone, and 1.8 uM antimycin A.

Mitochondrial Ca®* uptake was estimated fluorimetri-
cally with Fura 6 (340/380 nm excitation and 510 nm
emission wavelengths) (Thermo Fisher Scientific) with
sequential additions of 25 nmoles of Ca®* to the incuba-
tion medium (125 mM KCl, 20 mM Hepes, 1 mM
MgCl,, 2 mM KH,PO,4, 0.2 mM ATP, 1 uM rotenone,
5 mM succinate, 0.3 uM Fura 6, pH 7.2).

Mitochondrial membrane potential was estimated
using safranin O (excitation and emission wavelengths of
495 nm and 586 nm, respectively), as previously de-
scribed [15]. The incubation buffer contained 125 mM
KCl, 20 mM HEPES, 1 mM MgCl,, 2 mM KH,POy,,
0.2 mM ATP, 200 pg/mL BSA, 5 mM glutamate, 2 mM
malate, 2 pM safranin O, pH 7.2). Mitochondrial mem-
brane potential decay curves were obtained by repetitive
additions of 25 nmol Ca** or 2-16 nM of the respiratory
chain uncoupler SF6847.

For mitochondrial respiration, 100 pg of brain
mitochondria were resuspended in 0.5 ml of respiration
buffer containing 125 mM KCl, 20 mM Hepes, 4 mM
K,HPO,, 0.1 mg/ml BSA, pH 7.2 and 1 mM ADP.
Glutamate (5 mM) and malate (2 mM) were used as oxi-
dative substrates. Oxygen consumption was recorded
with an oxygraph equipped with a Clark electrode
(Hansatech, Norfolk, UK), as described [20], before
(state 4) and after the addition of ADP (state 3). SF6847
(0.1 uM) was used to fully uncouple mitochondrial
respiration (state 3 uncoupled).

Respiratory chain complex I and complex IV enzym-
atic activities were measured spectrophotometrically, as
previously described [21].

Bioenergetics measurements in cultured cells

Skin fibroblasts (from the repository at the University of
California, San Diego) were cultured in Dulbecco modi-
fied Eagle medium (DMEM) supplemented with 25 mM
glucose, 4 mM glutamine, 1 mM pyruvate, and 10% fetal
bovine serum. All fibroblast lines were coded to protect
patients’ identity.

HEK293T (from American Type Culture Collection,
ATCC, Manassas, VA), were grown in DMEM supple-
mented with 25 mM glucose, 4 mM glutamine, 1 mM
pyruvate, and 5% fetal bovine serum.

All cells tested negative for mycoplasma contamin-
ation by PCR assays of the culture medium using
previously described primer sets and amplification
protocols [22].
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For mitochondrial membrane potential and mitochon-
drial content measurements skin fibroblasts were seeded
at the density of 1.5 x 10* cells/well in replicates of
eights in 96-well tissue culture plates in growth medium
incubated at 37 °C in 5% CO,. The following day, all
cells were washed with cultured medium and loaded
with 50 nM tetramethylrhodamine methyl ester
(TMRM; 544ex, 590em; Thermo Fisher Scientific) and
450 nM Mito Tracker Green (MTG; 490ex, 516em;
Thermo Fisher Scientific) for 30 min at 37 °C in phe-
nol-free DMEM containing 5 mM glucose, 4 mM glu-
tamine, and 1 mM pyruvate, half of the wells
additionally contained the protonophore carbonyl cyan-
ide p-trifluoromethoxyphenylhydrazone (FCCP; 2 pM)
to completely depolarize mitochondria and obtain back-
ground TMRM and MTG fluorescence, which were
subtracted from total fluorescence levels. After washing
with DMEM, MTG and TMRM fluorescence were sim-
ultaneously recorded in a plate reader equipped with a
polychromator (Spectramax 5; Hitachi, Tokyo, Japan).
MTG and TMRM fluorescence values were expressed as
relative fluorescence units per milligram of total cellular
proteins (DC Protein Assay; Bio-Rad, Hercules, CA).

Total ATP content in fibroblasts was measured by lu-
ciferase reactions in a luminometry plate reader, accord-
ing to the manufacturer’s guidelines (Promega, Madison,
WI). Cells were seeded at the density of 1.5 x 10* cells/
well in replicates of nines in 96-well tissue culture plates
in growth medium incubated at 37 °C in 5% CO,. On
the following day, triplicates of wells were incubated
with either DMEM containing 5 mM glucose, 4 mM
glutamine, and 1 mM pyruvate (ATP baseline), DMEM
containing 5 mM 2-Deoxy-D-glucose (2DG), 4 mM glu-
tamine, and 1 mM pyruvate to block glycolysis (ATP
2DG) or DMEM containing 5 mM glucose, 4 mM glu-
tamine, 1 mM pyruvate, and 1 pM oligomycin to block
the mitochondrial ATPase (ATP Oligo) for 90 min. Cells
were washed with PBS and lysed in 30 pl of
trichloroacetic acid (2.5% W/V) on ice for 30 min. Fol-
lowing lysis, 20 pl aliquots were pipetted into a separate
plate for protein determination for data normalization,
and 45 pl of Tris-acetate (400 mM, pH 8.0) buffer was
added to each well of the remaining lysates. Biolumines-
cence was measured promptly after adding and mixing
20 pl of luciferase reagent. Luminescence values were
normalized against an ATP standard and normalized by
protein content.

Oxygen consumption rate (OCR) and extracellular
acidification rate (ECAR) were measured in human
fibroblasts or TDP-43 transfected HEK293T cells with a
Seahorse XF96 Flux Analyzer (Agilent, Santa Clara, CA).
Cell lines were seeded in 12 wells of a XF 96-well cell
culture microplate at a density of 1 x 10* cells/well
(fibroblasts) and 2 x 10* cells/well (HEK293T cells) in
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200 pL of growth medium and incubated for 24 h at 37 °C
in 5% CO,. After replacing the growth medium with
200 pL of XF Assay Medium supplemented with 5 mM
glucose, 1 mM pyruvate and 4 mM glutamine, pre-
warmed at 37 °C, cells were degassed for 1 h before start-
ing the assay procedure, in a non-CO, incubator. OCR
and ECAR were recorded at baseline followed by sequen-
tial additions of 1 pM oligomycin, 2 uM FCCP, and
0.5 uM Antimycin A (AA) plus 0.5 uM Rotenone (Rot).
Non-mitochondrial oxygen consumption (in the presence
of AA + Rot) was subtracted from all OCR values, and
outliers technical replicates outside the 2 standard devi-
ation of the mean were discarded for both ECAR and
OCR. In fibroblasts, values were normalized by the mean
protein value of each line measured by modified Lowry
protein assay. In HEK293T cells, values were normalized
by total DNA content measured by fluorescence of DAPI
stain, using DNA standards for quantification.

Cultured cells transfection and immunostaining
HEK293T or HeLa cells were transiently transfected
with plasmids expressing recombinant WT or mutant
human TDP-43-myc or empty vector, using FuGENE-
HD (Promega), according to the manufacturer’s proto-
col. For ER and mitochondrial contact analyses, HeLa
cells were co-transfected with ddGFP plasmids targeted
to mitochondria and ER (Tom20-ddGFP and calN-
ddGFP, respectively) together with DSred2-Mito. Cells
were imaged 48 h later on the Leica TCS SP5 confocal
microscope on a live imaging stage, controlled at 37 °C.

Live cell calcium imaging was performed with HeLa
cells co-transfected with WT or mutant TDP-43 and
mitochondrially targeted GCamp6. 48 h after transfec-
tion, cells were perfused with 20 uM ATP in imaging
medium containing (156 mM NaCl, 3 mM KCl,
2 mM MgSO, 125 mM KH,PO, 10 mM glucose,
1 mM EGTA and 10 mM HEPES, pH 7.35), followed
by replenishment of ER calcium with 2 mM calcium
to induce store operated calcium entry, as described
previously [23].

Brain mitochondria isolation for TDP-43 western blots

Brains from TDP43"*"*T transgenic mice and littermate
N-Tg controls were cryopreserved by cutting the whole
brain into 30—40 mg sections, placing them into solution
containing 300 mM sucrose and 20% (by volume)
DMSO, freezing in liquid nitrogen, and storing them at
-80 °C until the experiment. For mitochondria isolation,
~100 mg of frozen brain tissue was slowly (1 h) thawed
on ice, then the cryopreservation solution was replaced
with homogenization medium (HM) comprising
225 mM sucrose, 75 mM mannitol, 1 mM EGTA,
20 mM HEPES (pH 7.4), and 1 mg/ml bovine serum
albumin essentially fatty acid free (BSA). Brain tissue
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was homogenized in 10 ml of HM with a Dounce tissue
grinder (15 ml volume, glass tube-glass pestle) manually
by 40 strokes, in ice (step 1). All further procedures were
performed at 4 °C. The homogenate was centrifuged at
2000 g x 5 min; the supernatant was further centrifuged
at 12000 g x10 min (step 2). The pellet from this step
was collected, resuspended in 1 ml of HM, loaded on
top of 9 ml of 23% Percoll™ separation medium, and
centrifuged at 31,000 g x 10 min. The Percoll™ separ-
ation medium was prepared by dissolving 225 mM su-
crose, 75 mM mannitol, 1 mM EGTA, 20 mM HEPES in
100% Percoll™ and adjusting pH to 7.4; this medium was
diluted with HM to 23% Percoll™. The pellet from this
step was collected and washed 2 times by centrifuging at
12000 g x 10 min in HM. The final pellet was dissolved
in 200 pl of HM devoid of BSA (HMB54). For digitonin
treatment, this pellet was thoroughly resuspended in
10 ml of HM™** and 20 ul of 10% digitonin DMSO so-
lution (0.02%, final digitonin concentration) was added
to the suspension. After incubating on ice for 5 min, the
suspension was centrifuged at 12000 g x 10 min, the
pellet was resuspended in digitonin-free HM™®** and
centrifuged again at 12000 g x 10 min. The final solid
pellet was resuspended in 100 pul of HM™®** and stored
frozen at —20 °C until the experiment.

For assaying combined synaptic + nonsynaptic mito-
chondria, the isolation procedure was modified as follows.
The supernatant from step 2 above was collected, and
treated with 0.02% digitonin for 5 min in ice, then centri-
fuged at 12000 g x 10 min. The pellet was resuspended in
10 ml of HM and centrifuged 12,000 g x 10 min. To re-
move proteins electrostatically attached to mitochondria
membranes, the pellet from this step (contains synaptic +
non-synaptic mitochondria) was resuspended in 2 ml of
medium comprising 6 M KCl, 20 mM HEPES (pH 7.4)
and incubated in ice for 5 min with occasional gentle agi-
tation. The suspension was diluted with HM-BSA to
10 ml and centrifuged 12,000 g x 10 min, and the pellet
was collected. To prepare digitonin -treated mitochondria
from this fraction, mitochondria pellet was diluted to
10 ml with HM-BSA and treated with 0.01% digitonin for
7 min in ice, with occasional gentle agitation. The suspen-
sion was centrifuged 12,000 g x 10 min, the pellet was col-
lected and washed in 10 ml of HM-BSA and centrifuging
12,000 g x 10 min; the procedure was repeated once. The
final solid mitochondria pellet was resuspended in 100 pl
of HM-BSA and stored frozen at -20 °C until the
experiment.

Western blot analyses

Samples were lysed in RIPA buffer (Thermo Fisher
Scientific) and centrifuged at 14,000 rpm at 4 °C for
20 min. Supernatants were diluted in 2X Laemmli sample
buffer (Bio-Rad). Proteins were separated on 10 or 4-20%
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gradient Mini-PROTEAN TGX gels (Bio-Rad) and trans-
ferred to nitrocellulose blotting membranes (Bio-Rad).
Membranes were probed with primary antibodies against
FLAG tag (M2, Sigma), MCU (Sigma), MICU1 (Abcam,
Cambridge, MA), cytochrome C (Cell Signaling, Danvers,
MA), Cyclophilin D (Millipore, Billerica, MA), Tim23 (BD
Biosciences, San Jose, CA), VDAC1 (Abcam), COX1
(Abcam), GAPDH (Thermo Fisher Scientific), citrate syn-
thase (Abcam), and an oxidative phosphorylation
(OXPHOS) cocktail (Abcam) overnight at 4 °C. Blots were
then probed with horseradish peroxidase-conjugated anti-
mouse (Jackson ImmunoResearch, West Grove, PA) or
anti-rabbit (Thermo Fisher Scientific) secondary antibodies
and detected using enhanced chemiluminescence (Bio-
Rad).

Statistical analyses

All data are presented as mean + standard deviation in
all experiments, except for the results of Figs. 4 and 5,
which are presented as mean + standard error of the
mean. The results were compared using Student’s t-test
or, when more than one condition was examined, one-
way ANOVA with Bonferroni correction. In either case,
a p value <0.05 was considered significant.

Results
Mitochondrial bioenergetics is unaffected in mutant TDP-
43"3"5T mouse brain
The B6.Cg-Tg(Prnp-TARDBP*A315T)95Balo/] mouse
strain (from now on referred to as TDP-43*3"T mice)
expresses human A315T mutant TDP-43 with a N-ter-
minal FLAG tag in the nervous system, under the con-
trol of the prion promoter. The expression of the
transgene results in a 3-fold increase in the levels of
TDP-43 in the brain. These transgenic mice develop a
neurodegenerative disease characterized by abnormal
gait starting at 2 moths of age, TDP-43 and ubiquitin
pathology in brain and spinal cord, and motor neuron
degeneration [7]. In TDP-43%315T mice, CNS degener-
ation is accompanied by degeneration of the myoenteric
plexus, resulting in premature death due to intestinal
paralysis [24]. The average survival of our cohort of
TDP-43%3T mice obtained from The Jackson Labora-
tories was 103.25 days (SD = 22.89 days, n = 20),
consistent with previously reported survival data [7].
Since TDP-43**"*T mice develop clear TDP-43 path-
ology in the brain [7], we tested whether brain mito-
chondrial bioenergetics was affected. Mitochondria were
freshly isolated from adult mice brain at 45 days and at
90 days (presymptomatic and symptomatic ages, respect-
ively). Oxygen consumption was measured using
glutamate plus malate as substrates, which drive respir-
ation through complex 1. There were no respiratory
defects in TDP-43A315T relative to non-transgenic
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(N-Tg) littermates brain mitochondria at 45 days
(Fig. 1a) and at 90 days (Fig. 1b). No differences
were found in state 4 respiration (non-phosphorylat-
ing) and state 3 uncoupled respiration (non-phos-
phorylating, after addition of the uncoupler FCCP).

Mitochondrial ATP synthesis was also measured in
isolated mouse brain mitochondria at 45 and 90 days of
age using a kinetic assay. ATP synthesis driven by com-
plex I substrates malate plus glutamate did not differ be-
tween TDP-43**""T and N-Tg littermates brain
mitochondria at either ages (Fig. 1c). Similarly, complex
[I-driven ATP synthesis with succinate as substrate, in
the presence of complex I inhibitor rotenone, did not
differ in mutant and littermate control mice (Fig. 1d).

Since no defects in mitochondrial respiration and ATP
synthesis were detected at presymptomatic (45 days) and
at symptomatic (90 days) ages, in order to avoid poten-
tially confounding effects due to major changes in brain
cyto-architecture associated with neurodegeneration, we
opted to continue the measurements of mitochondrial
function at disease onset (60 days). The enzymatic activ-
ities (Vmax) of respiratory chain complexes I and IV
(cytochrome oxidase) measured in isolated brain mito-
chondria (Fig. 2a, b) did not differ in TDP-43**">T and
N-Tg littermate brain mitochondria. Furthermore, we
measured the sensitivity of brain mitochondrial mem-
brane potential to increasing doses of the uncoupler
SF6847, using safranin O in a fluorimetric assay. This
assay is an indicator of the mitochondrial bioenergetic
power, as the respiratory chain attempts to prevent loss
of membrane potential by increasing electron transfer.
The slopes of mitochondrial membrane depolarization
in response to uncoupling (Fig. 2c) were virtually identi-
cal in mutant and littermate control mice at 60 days of
age (n = 6 mice per group, 3 males and 3 females), fur-
ther suggesting lack of bioenergetic differences.

Lastly, the rate of hydrogen peroxide emission from
brain mitochondria respiring with succinate as substrate
was measured by Amplex red fluorescence, under basal
conditions and after sequential additions of rotenone
and antimycin A to block respiratory chain complex I
and complex II, respectively. H,O, emission in all condi-
tions did not differ in 60 days old TDP-43"3'*T and
N-Tg littermate brain mitochondria (Fig. 2d).

Taken together these results indicated that expression
of mutant TDP-43 in mouse brain did not result in sig-
nificant bioenergetic defects at ages that preceded or
followed symptom onset in these mice.

Mitochondrial calcium uptake is elevated in mutant TDP-
43"315T mouse brain

The ability to buffer calcium is a fundamental property
of brain mitochondria, which is altered in various mouse
models of neurodegenerative diseases, including familial
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ALS associated with mutant SOD1 [15, 16, 25]. Therefore,
we tested mitochondrial calcium capacity in isolated brain
mitochondria of 60 days old transgenic and N-Tg mice
using Fura 6 in a fluorimetric assay. After each bolus
addition of calcium (20 nmoles), there was a rapid uptake
as shown by a downward deflection of the fluorescence
traces, reflecting calcium entry into mitochondria, from
which Fura 6 is excluded. When the calcium capacity is
saturated, mitochondria stop taking up calcium, indicated
by a lack of deflection in the trace. Interestingly, as shown
by the representative calcium uptake traces (Fig. 3a) and
by the quantification of maximal calcium capacity (Fig.
3b), TDP-43"3">T took up significantly more calcium than
N-Tg littermate brain mitochondria. Furthermore, the rate
of mitochondrial depolarization, which reflects the pro-
portion of mitochondria that undergo permeability transi-
tion upon increasing calcium loads, was slower in
TDP-43A*"*T mitochondria (Fig. 3c).

Western blot analyses of brain mitochondria excluded
that the levels of key proteins involved in mitochondrial
calcium handling, namely the mitochondrial calcium
uniporter (MCU), cyclophilin D (CypD), the MCU regu-
lator MICU]1, and the voltage dependent anion channel
VDACI, were unchanged in TDP-43A%"*" as compared

to N-Tg mitochondria (# = 8 and 9 for N-Tg and TDP-
43A"T respectively, Fig. 3d, e).

Taken together, these results indicated that brain mito-
chondria of TDP-43 mutant mice had well preserved
calcium handling mechanisms, and also suggested that
these mitochondria were in fact more resistant to
calcium-induced MPTP than N-Tg controls.

Energy metabolism is unaffected in TDP-43 mutant human
skin fibroblasts

In order to test cellular energy metabolism in patient-
derived cells expressing physiological levels of mutant
TDP-43, we studied primary skin fibroblasts from 3 indi-
viduals harboring the N352S point mutation associated
with ALS-FTLD [26] and 8 healthy controls, four of
whom were kindred of the patients.

Fibroblasts were subjected to flux analyses of oxygen
consumption (OCR) and extracellular acidification
(ECAR) rates using the Seahorse XF96 platform. Average
OCR rates at baseline respiration were not significantly
different in TDP-43 and control fibroblasts (Fig. 4a).
Similarly, the proton leak (i.e., residual respiration after
oligomycin addition, Fig. 4b) and maximal uncoupled
respiration (ie., respiration after FCCP addition, Fig. 4c)
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were unchanged in patient and control cells. Spare re-
spiratory capacity, indicating the reserve of respiration
potential unused under basal conditions, was also not
significantly different (Fig. 4d). ECAR, which reflects the
anaerobic utilization of glucose and lactate production,
was unchanged in TDP-43 mutant cells at baseline (Fig.
4e) and after oligomycin or FCCP additions (data not
shown). Importantly, the ECAR:OCR ratio was similar in
mutant and control cells (Fig. 4f), suggesting that in
TDP-43 mutant cells there was no shift toward glycolytic
energy metabolism, a condition typically observed when
mitochondria are defective [27].

We then assessed the ability of mitochondria to accu-
mulate the potentiometric fluorescent dye TMRM in
TDP-43 mutant fibroblasts and controls. This approach
allows for evaluating differences in mitochondrial mem-
brane potential. There were no significant differences in
TMRM accumulation between TDP-43 mutant and
control cells (Fig. 5a).

Next, to examine the total mitochondrial content we
utilized the fluorescent dye MTG, which accumulates in

mitochondria in a virtually non-membrane potential
dependent manner. We did not detect differences in the
mitochondrial content between TDP-43 mutant and con-
trol cells (Fig. 5b). Furthermore, to exclude the differences
in mitochondrial membrane potential that could be masked
by differences in mitochondrial content, we normalized the
TMRM values by MTG values. Even when TMRM values
were normalized by mitochondrial content (MTG) for each
cell analyzed, there were no significant differences between
TDP-43 mutant and control cells (Fig. 5¢).

Lastly, we analyzed steady state ATP content using a
luciferase based assay, which did not show differences
between TDP-43 mutant and control fibroblasts under
baseline conditions (Fig. 5d). Inhibiting glycolytic ATP
synthesis with 2-deoxyglucose resulted in a severe de-
cline of ATP content relative to baseline conditions. The
decline had a similar magnitude in TDP-43 mutant and
control cells (Fig. 5e). Inhibition of OXPHOS with oligo-
mycin resulted in a more modest decline in ATP content
relative to baseline conditions, which did not differ
between TDP-43 mutant and control cells (Fig. 5f).
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Taken together, these results indicated that energy me-
tabolism in both TDP-43 mutant and control fibroblasts
was highly reliant on glycolysis and that there was no
significant difference in the ability to run glycolysis or
OXPHOS between mutants and controls, thereby
excluding that mutant cells had bioenergetic defects.

Energy metabolism is unaffected in HEK293 cells
expressing various TDP-43 mutants

To extend the analyses of cellular bioenergetics to a larger
number of TDP-43 mutations, we expressed recombinant
human TDP-43 with the Q331K, Q343K, M337 V, A315T,
as well as wild type (WT) TDP-43, in HEK293T cells. Cells
were transiently transfected by lipofection with plasmids
encoding for various TDP-43 constructs, resulting in simi-
lar levels of protein expression for each construct, as
determined by western blot analyses of cell homogenates
and quantification (Fig. 6a, b). OCR and ECAR were

measured by Seahorse flux analyzer in cells transfected
with TDP-43 and with empty vector. There were no
significant differences in baseline oxygen consumption
(Fig. 6¢) and acidification rates (data not shown) among
cells transfected with the various TDP-43 constructs and
empty vector controls. Furthermore, no significant differ-
ences were detected between cells expressing TDP-43 and
vector controls in OCR and ECAR, when cells were
treated with oligomycin, FCCP, or in the ECAR:OCR
ratios (data not shown). These results indicated that ex-
pression of several forms of mutant or WT TDP-43 did
not impair overall energy metabolism in HEK293T cells.

ER-mitochondria contacts are unaltered, while ER calcium
mitochondrial uptake is increased, in cells expressing
mutant TDP-43

TDP-43 was shown to alter the physical interactions be-
tween mitochondria and ER [13], leading to functional
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alterations in intracellular calcium handling, which could
potentially affect mitochondrial bioenergetics, when cal-
cium is released from internal ER stores. Therefore, we
used a dimerization-dependent GFP (ddGFP) to explore
the mitochondrial-ER contacts in HeLa cells co-trans-
fected with WT or various TDP-43 mutant constructs.
The GFP monomers were targeted to the mitochondrial
outer membrane and the ER membrane, respectively.
Cells were also transfected with DSred2-Mito to image
mitochondria (Fig. 6d). The ddGFP only fluoresces when
the monomers are closely apposed, indicating that the
ER and mitochondrial membranes are juxtaposed [28].
Quantification of the percentage of co-localization of
DSred2-Mito with ddGFP fluorescence (i.e., co-
localization of red and green fluorescence), which is an
indicator of the proximity of the two organelles, did not
differ between cells expressing WT or mutant TDP-43
(M337 V and A315T) and vector only cells (Fig. 6e).
This result indicated that, by this assay, mutant TDP-43
expression in HeLa cells did not significantly alter
mitochondria-ER contacts.

Next, we determined mitochondrial calcium uptake in
TDP-43 expressing cells upon calcium release from the ER,
following metabotropic activation of the inositol 3-phos-
phate receptor through stimulation of purinergic receptors

by extracellular ATP. HeLa cells expressing WT or mutant
(M337 V and A315T) TDP-43 were transfected with the
calcium reporter mtGCaMP6 targeted selectively to the
mitochondrial matrix [29] (Fig. 6f). ER calcium release was
stimulated by perfusion with 20 pM ATP in calcium-free
buffer, followed by perfusion with calcium-containing buf-
fer to activate store-operated calcium entry (SOCE). Inter-
estingly, the mitochondria of A315T TDP-43 expressing
cells took up significantly more calcium than both WT and
M337 V TDP-43 expressing cells, as indicated by the higher
fluorescence peak (Fig. 6g). On the other hand, no differ-
ence was observed in mitochondrial calcium uptake when
calcium was superfused and entered cells through SOCE
mechanisms. Since the physical connections between the
ER and mitochondria were unchanged by A315T TDP-43,
a likely explanation for this observation is that cells express-
ing A315T TDP-43 have increased ability to accumulate
calcium in mitochondria, which is reminiscent of the in-
creased calcium uptake observed in brain mitochondria of
TDP-43**"*T mice (Fig. 3).

TDP-43 association with mitochondria is peripheral, and
does not affect the levels of respiratory chain subunits

It was proposed that TDP-43, not only is associated with
mitochondria, but is also imported inside the organelles
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due to an internal targeting amino acid signal, and that
the mitochondrial import of TDP-43 is increased by the
pathogenic mutations both in cells and in the TDP-
43%315T mice [14]. To test the hypothesis that TDP-43 is
associated with mitochondria we first performed immu-
nostaining of fibroblasts with antibodies directed against
TDP-43 and against the mitochondrial protein cyto-
chrome c. In both control and TDP-43 N352S mutant fi-
broblasts, TDP-43 was detectable exclusively in the
nucleus (Fig. 7a-c) and no co-localization of TDP-43
with the mitochondrial marker was observed.

Next, we used a biochemical approach to examine the
association of TDP-43"3'*T with mitochondria in vivo,
in mouse brain. Since the transgenic construct contains
a FLAG epitope, mitochondrial fraction was analyzed by
western blot, using anti-FLAG antibodies. Importantly,
we compared the mitochondrial fraction treated with
KCl washes, with and without the addition of a low dose
of the detergent digitonin to eliminate any potential con-
tamination from non-mitochondrial membranes, such as
ER and peroxisomes. Figure 7d summarizes the brain
mitochondria preparation steps that were employed in
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this experiment. An association of TDP-43**"*T_-FLAG
with brain mitochondria was clearly detected in the frac-
tions not subjected to KCl washes or digitonin treatment
(Fig. 7e). However, immunoreactive bands corresponding
to TDP-43**""T_FLAG were completely undetectable
after KCl washes, irrespective of digitonin treatment.
Neither the matrix protein citrate synthase, nor the inter
membrane space protein cytochrome c¢ were significantly af-
fected by KCl washes, with and without digitonin treatment,
indicating that the dose of digitonin used did not comprom-
ise the integrity of the mitochondrial outer and inner mem-
branes. Taken together, these results suggested that a portion
of the protein was peripherally associated with brain
mitochondria, presumably through electrostatic interactions.
Because it was proposed that TDP-43 in mitochondria
results in downregulation of respiratory chain proteins,

specifically complex I [14], we assessed the levels of re-
spiratory chain complex subunits in gradient-purified
brain mitochondrial fractions of WT and TDP-43%31°T,
using a specific antibody cocktail. The levels of individ-
ual subunits of OXPHOS complexes I-V were
unchanged in TDP-43**"*T mitochondria, relative to
N-Tg controls (Fig. 7f), suggesting that mutant TDP-43
associated with brain mitochondria did not affect
respiratory chain subunit levels.

Discussion

Mitochondrial dysfunction is one of the known patho-
genic events associated with ALS. In particular, bioener-
getic impairment has been amply described in cellular
and mouse models of fALS caused by SOD1 mutations
[30] and, more recently, by other genetic forms of the
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disease, such as mutations in C90rf72 [31, 32], VCP
[33], and CHCHD10 [34]. TDP-43 mutations cause rare
cases of fALS, but cytosolic aggregation of wild type
TDP-43 in motor neurons is a prominent pathological
feature of ALS, including the most prevalent sporadic
form of the disease [3]. Mislocalization and aggregation
of TDP-43 have been shown to cause abnormalities of
mitochondrial morphology and dynamics in cultured
neuron systems [35] and in vivo, in peripheral neurons
of animal models of TDP-43 ALS [11, 12]. The mecha-
nisms of these abnormalities and their impact on disease
pathogenesis remain to be fully elucidated, but mutant
TDP-43 was suggested to impair complex I in cultured
cells [36]. Moreover, mutant TDP-43 was recently pro-
posed to impair mitochondrial function directly from
the matrix compartment, where it causes respiratory
chain dysfunction by inhibiting complex I translation
[14]. Such mechanism of mitochondrial damage by
intra-mitochondrial TDP-43 was proposed in TDP-
43*315T transgenic mice and patient-derived cells.

In this study, we sought to validate the findings of
bioenergetic dysfunction in TDP-43"3'*T  transgenic
mice, patient fibroblasts, and transfected cell expressing
TDP-43. Overall, we did not confirm previous findings
of mitochondrial bioenergetics defects in any of these

models. In particular, mitochondria isolated from the
brain of TDP-43**'*T transgenic mice did not show
impairment of mitochondrial respiration, ATP gener-
ation, and calcium handling. Similarly, there was no
impairment of bioenergetic functions in skin fibroblasts
harboring a pathogenic TDP-43 mutation or in
HEK293T cells overexpressing various mutant forms of
TDP-43.

We found that a portion of TDP-43 was peripherally
associated with the surface of intact mouse brain mito-
chondria. This association, despite not interfering with
mitochondrial bioenergetics, could affect inter-organellar
communication. Indeed, TDP-43 was shown to interfere
with the structures that link mitochondria and ER, also
known as mitochondria associated membranes or
MAMs [37]. Our ddGFP assay, did not detect an overall
change in the amount of ER-mitochondrial contacts, but
this method does not specifically detect MAMs. There-
fore, more work, using a variety of experimental
approaches, which are beyond the scope of this study on
mitochondrial function, will have to be done to further
explore the effects of the peripheral association of TDP-
43 with mitochondria.

Earlier studies had shown that TDP-43 overexpression
alters mitochondrial dynamics in neurons, resulting in
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decreased motility accompanied by abnormal clustering
and fragmentation [10, 12, 38]. Based on our results show-
ing that mitochondrial bioenergetics is essentially un-
affected by mutant TDP-43, we conclude that the
mitochondrial dynamics abnormalities are not the result
of intrinsic mitochondrial bioenergetics defects or intra-
mitochondrial localization of mutant TDP-43. It is logical
to speculate that abnormal mitochondrial movement and
morphology could be caused by alterations in components
of the mitochondrial dynamics machinery, which are
localized in extra-mitochondrial compartments or on the
outer mitochondrial membrane. This could lead to im-
paired motility and mitochondrial clustering along the
neuronal processes. Dysregulation of mitochondrial trans-
port by mutant TDP-43 could impair the correct position-
ing of mitochondria relative to major sites of energy
utilization, such as synapses. For example, the levels of the
outer membrane cargo adaptor Mirol, a protein necessary
for the docking of mitochondria on microtubule tracks,
were decreased in spinal cord of mice expressing mutant
TDP-43 as well as ALS patients [35]. We propose that
TDP-43 causes alterations of proteins involved in mito-
chondrial transport, such as Mirol, or components of the
fusion and fission apparatus, without TDP-43 internaliza-
tion in mitochondria or bioenergetic defects.

Interestingly, brain mitochondrial calcium uptake
capacity was increased in TDP-43"3'*" transgenic mice
relative to controls. This result suggests that TDP-43
A315T mitochondria were less prone to undergo
calcium induced permeability transition than controls, a
further indication that they did not suffer from bioener-
getic impairment.

Like the mouse model, cultured cells expressing
mutant TDP-43 did not show bioenergetic defects, both
when endogenous levels of the protein were present, in
patient-derived fibroblasts, and when the mutant pro-
teins were overexpressed, in transfected cells. The results
in fibroblasts were in line with a recent report, which
compared C90rf72 mutant and TDP-43 mutant fibro-
blasts, and detected respiratory chain defects in the
former, but not the latter [31]. Furthermore, similar to
the transgenic mouse brain, cells expressing A315T
TDP-43 had increase mitochondrial calcium uptake
upon ER calcium release.

The reasons for the discrepancy between the present
study and a recent report in which mitochondrial
respiratory chain defects were associated with mitochon-
drial import of mutant TDP-43 [14] is not immediately
clear, especially in regards to the TDP-43**'>T mouse
model, since we utilized mice from the same transgenic
line and at similar ages as in the aforementioned report.
It is possible that differences resulted from the protocols
of mitochondrial purification, which were partly dissimi-
lar in the two studies. It could be hypothesized that

Page 13 of 15

mitochondria from mutant TDP-43 brains are more fra-
gile and could be damaged by the isolation procedure,
which was not the case in our study, because soluble
proteins of the intermembrane space were retained in
the mitochondrial preparation. On the other hand,
membrane fragility could not explain a decline in the ac-
tivity of individual respiratory chain complexes, such as
complex I, whose activities are measured on fractionated
mitochondrial membranes and do not depend on mito-
chondrial integrity. Specifically, we did not find evidence
of a decrease in either complex I-driven respiration and
ATP synthesis or complex I oxidoreductase activity in
brain mitochondria from TDP-43"3'*T transgenic mice,
suggesting that OXPHOS is preserved in these mito-
chondria. Furthermore, the levels of respiratory chain
subunits that we analyzed were unchanged in TDP-
43"315T transgenic mouse brain mitochondria, suggest-
ing that their synthesis was not impaired.

Unlike previous reports [14, 36], we did not detect re-
spiratory defects in mutant TDP-43 human fibroblasts. A
possible explanation for this discrepancy in findings could
be ascribed to the different TDP-43 mutations investi-
gated in previous studies and the present one, since we
analyzed lines from three patients from one family with
the N352S mutation and their healthy relatives. Neverthe-
less, we also tested the effects of recombinant mutant
TDP-43 expression in HEK293T cells, an approach similar
to the one utilized previously [14], but did not detect
respiratory defects in these mutant cells either.

Conclusions

Multiple lines of evidence support a role for mutant
TDP-43 in causing alterations of mitochondrial motility,
morphology, and distribution in neurons, which could
result in failure to provide energy to critical sites of
utilization. However, our present studies did not confirm
reports of mutant TDP-43 causing impaired mitochon-
drial bioenergetics in vivo and in cultured cells, suggest-
ing that, at least in the systems we investigated,
mitochondrial OXPHOS dysfunction does not directly
participate in disease pathogenesis. On the other hand,
we report the intriguing finding of increased mitochon-
drial calcium uptake in mouse brain mitochondria and
patient derived fibroblasts harboring A315T TDP-43.
The pathological significance and especially the mecha-
nisms underlying this observation remain to be deter-
mined, but they do not appear to involve changes in
mitochondrial bioenergetics.
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