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Abstract

Background: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic
Parkinson'’s disease (PD). Elevated kinase activity is associated with LRRK2 toxicity, but the substrates that mediate
neurodegeneration remain poorly defined. Given the increasing evidence suggesting a role of LRRK2 in membrane
and vesicle trafficking, here we systemically screened Rab GTPases, core regulators of vesicular dynamics, as potential
substrates of LRRK2 and investigated the functional consequence of such phosphorylation in cells and in vivo.

Methods: In vitro LRRK2 kinase assay with forty-five purified human Rab GTPases was performed to identify Rab family
proteins as substrates of LRRK2. We identified the phosphorylation site by tandem mass-spectrometry and confirmed it
by assessing phosphorylation in the in vitro LRRK2 kinase assay and in cells. Effects of Rab phosphorylation on
neurodegeneration were examined in primary cultures and in vivo by intracranial injection of adeno-associated
viral vectors (AAV) expressing wild-type or phosphomutants of Rab35.

Results: Our screening revealed that LRRK2 phosphorylated several Rab GTPases at a conserved threonine residue in
the switch Il region, and by using the kinase-inactive LRRK2-D1994A and the pathogenic LRRK2-G2019S along with Rab
proteins in which the LRRK2 site was mutated, we verified that a subset of Rab proteins, including Rab35, were authentic
substrates of LRRK2 both in vitro and in cells. We also showed that phosphorylation of Rab regulated GDP/GTP-binding
property in cells. Moreover, in primary cortical neurons, mutation of the LRRK2 site in several Rabs caused neurotoxicity,
which was most severely induced by phosphomutants of Rab35. Furthermore, intracranial injection of the AAV-Rab35
-T72A or AAV-Rab35-T72D into the substantia nigra substantially induced degeneration of dopaminergic neurons in vivo.

Conclusions: Here we show that a subset of Rab GTPases are authentic substrates of LRRK2 both in vitro and in cells.
We also provide evidence that dysregulation of Rab phosphorylation in the LRRK2 site induces neurotoxicity in primary
neurons and degeneration of dopaminergic neurons in vivo. Our study suggests that Rab GTPases might mediate LRRK2
toxicity in the progression of PD.
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Background

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disease, affecting about 1-3% of the
elderly population [1]. Mutations in Leucine-rich repeat
kinase 2 (LRRK2) comprise the leading cause of familial
PD, and genome-wide association studies have also identi-
fied LRRK? as a risk locus for sporadic PD [2, 3]. LRRK2
is a large multi-domain protein that encompasses a kinase
domain, a GTPase domain composed of a Ras of complex
(ROC) and a C-terminus of ROC region, and several
protein-protein interaction domains. Multiple lines of evi-
dence indicate that LRRK2 toxicity is kinase-dependent
[4-7], and the most common LRRK2 mutation,
LRRK2-G2019S shows increased kinase activity toward
generic kinase substrates [4, 5, 8—11]. Therefore, to under-
stand the physiological functions of LRRK2 as well as the
mechanism by which mutations in LRRK2 contribute to
PD pathogenesis, one of the greatest challenges in the field
has been to identify authentic LRRK2 substrates that are
associated with neurodegeneration. A previous study has
suggested that ribosomal protein s15 is an endogenous
substrate of LRRK2 which links LRRK2 toxicity to altered
protein synthesis and neurodegeneration [12]. However,
LRRK2 is thought to be a multivalent kinase and the
precise mechanisms by which dysregulation of the kinase
activity of LRRK2 causes neuronal toxicity are not fully
understood.

The physiological functions of LRRK2 in neurons
remain to be determined, but LRRK2 has been broadly
implicated in membrane dynamics and vesicle trafficking.
Previous studies have shown that LRRK2 localizes to
membranous or vesicular structures, such as endosomes,
lysosomes, multivesicular bodies, and autophagic vesicles
[13-15], and increasing evidence suggests that LRRK2
might have a role in endocytosis [16, 17], endolysosomal
sorting [18], retromer-mediated trafficking [19], and
autophagy [13, 14, 20-23]. Rab GTPases, which comprise
more than 60 members in the human genome, serve as
multifaceted organizers in almost all membrane and
vesicle trafficking processes [24, 25]. Since the identifica-
tion of the first LRRK2-related Rab GTPase Rab5b, phys-
ical, genetic and functional interactions between LRRK2
and many Rab family members have been reported [18,
19, 26-28]. An unbiased search for interactors of LRRK2
and a brain transcriptomics approach concurred that
LRRK2 interacts with Rab7L1 (also known as Rab29), and
dysfunction of the LRRK2-Rab7L1 complex has been
suggested to cause neurotoxicity by disrupting the endoly-
sosomal and autophagic pathways [13, 19, 23, 27]. Large-
scale phosphoproteomic screens using fibroblasts from
knock-in mice that were genetically engineered to harbor
either LRRK2-G2019S or inhibitor-resistant
LRRK2-A2016T led to the identification of a single
LRRK2 substrate, Rabl0 [29]. Further analysis with
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selected Rab GTPases showed that a few more Rabs
(Rablb and Rab8a) were also directly phosphorylated by
LRRK2 [29]. These findings are strongly suggestive of a
physiological role for Rab phosphorylation by LRRK2.
Thus, it is worthwhile to undertake a systematic inquiry
on the interplay of LRRK2 and Rab family GTPases, and
perhaps an equally important task is to interrogate the
functional consequence of Rab phosphorylation by
LRRK?2, particularly with respect to neurodegeneration.

Here we performed an in vitro LRRK2 kinase assay
with forty-five human Rab family proteins to screen Rab
GTPases as potential substrates of LRRK2. Our screen-
ing revealed that Rabla, 1b, 3, 8a, 8b, and 35 are directly
phosphorylated by LRRK2, and we identified that Rab
proteins are phosphorylated at a conserved threonine
residue in the switch II region. By using the kinase-
inactive LRRK2-D1994A and the pathogenic mutant
LRRK2-G2019S along with phosphomutants of Rabs, we
confirmed that a subset of Rab proteins, including
Rab35, are authentic substrates of LRRK2 both in vitro
and in cells. We also validated Rab phosphorylation at
the endogenous level by using kinase inhibitors of
LRRK2 and Lrrk2 knockout mice. Moreover, substitution
of the LRRK2 site in Rabl, 3, and 35 to either alanine or
aspartate, but not the wild-types induced neurotoxicity,
among which mutations in Rab35 caused the most
severe phenotype. Furthermore, intracranial injection of
adeno-associated viral vectors (AAVs) expressing
phosphomutants of Rab35 but not the wild-type into the
substantia nigra induced degeneration of dopaminergic
neurons in vivo. To the best of our knowledge, this
study is the first report on neurodegeneration of dopa-
minergic neurons caused by a direct substrate of LRRK2
in the mammalian brain.

Methods

Generation of recombinant Rab proteins

Entry clone ¢cDNA for each Rab GTPases was subcloned
into N-terminal GST tagged bacteria expression vector
(pDEST15, Invitrogen, Carlsbad, CA, USA) using LR
clonase (Invitrogen, Carlsbad, CA, USA) and the expres-
sion vectors generated were transformed into BL21-AI™
One Shot™ chemically competent E.coli (Invitrogen,
Carlsbad, CA, USA). Protein expression was induced
using 0.2% w/v L-arabinose (Sigma, St. Louis, MO, USA)
for 1.5 h. Cells were pelleted (3000 g for 20 min) and
then lysed with sonication in the presence of chilled lysis
buffer (50 mM Tris-HCl (pH 7.5), 0.5% TX-100,
150 mM NaCl, 0.5 mM EGTA, 2 mM DTT and
Complete Protease Inhibitor Mixture). Cell lysates were
centrifuged at 15,000 g for 15 min, and the supernatant
was incubated with GSH-sepharose beads (GE health-
care, Little Chalfont, UK) for overnight at 4°C. After
incubation, the beads were washed with PBS containing
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150 mM NaCl and 0.1% TX-100 three times. For the
kinase assay, beads were stored in PBS containing 30%
glycerol at — 80°C.

In vitro LRRK2 kinase assays

Recombinant LRRK2 (Invitrogen, Carlsbad, CA, USA)
and Rab proteins were incubated at 30°C for 30 min in
kinase assay buffer (20 mM HEPES (pH 7.5), 5 mM
EGTA, 20 mM B-glycerol phosphate, 20 mM MgCl,,
50 uM ATP (Sigma, St. Louis, MO, USA), and
0.5 uCi[y->*P] ATP (PerkinElmer, Waltham, MA, USA)).
The reaction was terminated by addition of Laemmili
sample buffer, heated at 75°C for 10 min and then re-
solved by 10% SDS-PAGE. After fixation with 10% acetic
acid and 40% methanol, gels were first stained in
Coomassie brilliant blue (CBB), and the amount of each
Rab GTPase was quantified by measuring the intensity
of Rab protein bands from CBB staining using Image].
Then, the gels were exposed to an X-ray film, and the
amount of 3?P incorporation into the substrate (Rab
protein of interest) and LRRK2 (autophosphorylation)
was quantified by standard autoradiography using
ImageQuant 6.0 software. The level of radiolabeled Rab
proteins was normalized against both the amount of Rab
GTPases (from CBB staining) and the level of LRRK2
autophosphorylation (from autoradiography) using the
following equation:

(amount of 32P incorporated into substrate) x 100,000
(amount of Rab GTPase) x (amount of 32P incorporated into LRRK2)

Identification of phosphorylation sites by tandem mass
spectrometry

Recombinant LRRK2 and Rab8a proteins were incubated
at 30°C for 30 min in the kinase assay buffer (20 mM
HEPES (pH 7.5), 5 mM EGTA, 20 mM p-glycerol phos-
phate, 2 mM ATP, and 20 mM MgCl,). The reaction
was terminated by addition of Laemmili sample buffer,
heated at 75°C for 10 min and then resolved by 10%
SDS-PAGE. Gels were stained by CBB after fixation with
10% acetic acid and 40% methanol. Excised gel bands
were destained with 50% ACN, shrunk with 100% ACN.
Proteins in gels were then reduced for 30 min at 60 °C
by adding 1 mM DTT and then alkylated for 30 min in
dark place by the addition of 5.5 mM IAA solution. The
samples were digested with sequence grade modified
trypsin for overnight at 30 °C in 0.1 M NH4HCOs;.
About 0.1 pg of protease was used for one gel band.
Peptides were extracted from the gel slices with 66%
ACN and 5% FA. The combined supernatants and ex-
tracts were dried by speedvac, and phosphopeptides
were enriched by TiO, (GL science, Tokyo, Japan)
microcolumns packed in GELoader tips. A small plug of
Cs material was stamped out of a 3M Empore Cg
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extraction disk (3M, St. Paul, MN, USA) and placed at
the end of GELoader tip. TiO, beads were suspended in
acetonitrile and packed on top of the Cg disk using a
1 mL disposable syringe. Peptide mixtures were diluted
five times in loading buffer (1 M glycolic acid in 80%
acetonitrile, 2-5% TFA) and loaded onto the TiO, micro-
columns. The column was washed with 10 ul of loading
buffer followed by 40 pl of washing buffer (80%
acetonitrile, 2% TFA). The samples were eluted using
20-40 pl of ammonia water (10 pl of 25% ammonia solu-
tion in 490 ul of water), pH 11. A small aliquot of each
of the eluates were acidified with 4-8 pl of formic acid
and purified using a SepPak microcolumn (Waters,
Wexford, Ireland). The resultant samples were dried by
speedvac. The resultant samples were dried by speedvac
and stored at — 80 °C before analysis. The samples were
redissolved in 20 pL of 5% FA and analyzed by on-line
nanoflow LC-MS/MS. All nano-LC-MS/MS experiments
were performed on an Ultimate 3000 system and
nano-RSLC  (Thermo  Fisher Scientific, Bremen,
Germany) connected to Mass Spectrometer with a
nanoelectrospray ion source. The tryptic digested
peptides were separated in a 15 cm analytical column
(Zorbax 300SB C18, 0.075 mm x 100 mm, Agilent Tech-
nologies, Waldbronn, Germany) with a 90-min gradient
from 5 to 60% acetonitrile in 0.1% formic acid. The ef-
fluent from nanoLC was directly electrosprayed into the
mass spectrometer. The MS instruments (LTQ XL and
LTQ-Orbitrap Elite, Thermo Fisher Scientific, Waltham,
MA, USA) were operated in data-dependent mode to
automatically switch between full-scan MS and MS/MS
acquisition. In LTQ, MS spectra were acquired over the
mass range of m/z 300-1600 Da in the ion trap at a
resolution of 3000 and subsequently subjected to MS/
MS with the five most intense peptide ions (charge
states >2), which were sequentially isolated and fragmen-
ted in the linear ion trap by multistage activation (MSA;
or pseudo-MS3). MS/MS spectra were identified by
using the MASCOT v2.3 (Matrix Science, London, UK)
against latest uniprot human or mouse database. To
search the phosphorylation sites, we used the searching
parameters as the following: maximum missing cleavage
sites, 4; fixed modification, carbamidomethyl (C);
variable modification, oxidation (M), biotin (K), biotin
(N-term), phospho(Y), and phospho(S, T). The toler-
ances of MS spectra and MS/MS were used as 2 Da and
1 Da respectively. After positive identification by Mascot
2.3., we confirmed the results by manual inspection.

Rab plasmids and site-directed mutagenesis

Entry clones for Rab GTPases were subcloned into N-ter-
minal V5- or GFP-tagged expression vectors (pcDNA™ 3.1/
nV5-DEST, pcDNA™-pDEST53) (Thermo Fisher Scientific,
Waltham, MA, USA) using LR clonase (Invitrogen,
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Carlsbad, CA, USA). Point mutant plasmids of Rab
GTPases were generated using site-directed mutagenesis
kit (Agilent Technologies, Santa Clara, CA, USA)
according to the manufacturer’s protocol. Each entry
clones were used as template and primer sequences were
as follows:

Rabla T75A (F: gaaagatttcgagcaatcacctcca-3’, R: tggag
gtgattgctcgaaatctttc-3°),

Rabla T75D (F: 5'-gaaagatttcgagacatcacctccagt-3', R:
5'-actggaggtgatgtctcgaaatctttc-3 ),

Rab3c T94A (F: 5'-gaaagatacagggctatcaccacag-3’, R:
5'-ctgtggtgatagcectgtatcttte-3 ),

Rab3c T94D (F: 5'-gaaagatacagggatatcaccacage-3’, R:
5'-gctgtggtgatatcectgtatctttc-3°),

Rab8a T72A (F: 5'-gaacggtttcgggcgatcacaacgg-3', R:
5'-ccgttgtgatcgeccgaaaccgtte-37),

Rab8a R72D (F: 5'-gaacggtttcgggacatcacaacggec-3', R:
5'-ggccegttgtgatgtccegaaaccgtte-3 ),

Rab35 T72A (F: 5'-gagcgcttccgegecatcaccteca-3', R:
5'-tggaggtgatggcgeggaagegcte-3°),

Rab35 T72D (F: 5'-gagcgcttccgegacatcacctecac-3°, R:
5'-gtggaggtgatgtcgcggaagegete-3'),

Rabla Q70L (F: 5'-cacagcaggcctggaaagatttc-3', R: 5'-g
aaatctttccaggectgetgtg-3°),

Rabla S25 N (F: 5'-gggttggaaagaattgccttcttc-3', R: 5'-g
aagaaggcaattctttccaacce-3 ),

Rab3c Q89L (F: 5'-cacagcaggcctggaaagataca-3', R: 5'-t
gtatctttccaggectgetgtg-3°),

Rab3c T44 N (F: 5'-tgtggggaaaaattcttttctatt-3', R: 5'-aa
tagaaaagaatttttccccaca-3 "),

Rab8a Q67L (F: 5'-cacagccggtctggaacggtttc-3°, R: 5'-g
aaaccgttccagaccggetgtg-3'),

Rab8a T22 N (F: 5'-ggtggggaagaactgtgtcctgt-3°, R: 5'-a
caggacacagttcttccccacc-3"),

Rab35 Q67L (F: 5'-cacagcggggctggagegettce-3', R: 5'-g
gaagcgctccageceegetgtg-37),

Rab35 S22 N (F: 5'-tgtgggcaagaacagtttactgt-3', R: 5'-a
cagtaaactgttcttgcccaca-3").

Generation of phospho-Rab antibodies

Polyclonal antibodies against Rabla phospho-T75 were
generated by injection of KLH-conjugated phospho-
peptide TAGQERFRpTITSSYYRG into rabbits. Antibodies
were purified from crude sera by using a sulfo-linked
immobilized peptide affinity column (Thermo Fisher
Scientific, Waltham, MA, USA) containing Rabla
phospho-peptide. The eluent was then applied to a sulfo--
linked immobilized peptide affinity column containing
non-phosphorylated Rabl peptide. We obtained purified
phospho-antibody from the flow-through.

GTP binding assay
Myc-tagged LRRK2s (wild-type, G2019S or D1994A)
and/or V5-tagged Rabs (wild-type or their phospho-
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mutants of Rabla, 3¢, 8a, 35) were transfected with Li-
pofectamine 2000 (Invitrogen, Carlsbad, CA, USA) into
HEK-293 cells. Cells were lysed with GTP-binding buffer
(50 mM Tris-HCI (pH 7.5), 0.5% Triton-X 100, 150 mM
NaCl, 5 mM MgCl2, 5 mM EGTA, Protease Inhibitor
Mixture (50 pM aprotinin, 50 uM leupeptin, and 50 uM
pepstatin), and 0.2 mM PMSF) and centrifuged (15,000 g
for 15 min). Supernatants were incubated with immobi-
lized y-amino-hexyl-GTP agarose (Jena Bioscience, Jena,
Germany) for 12 h at 4°C and then the beads were washed
with GTP-binding buffer containing 0.1% TX-100.
GTP-bound Rabs were eluted by Laemmili sample buffer
and subjected to SDS-PAGE for western blot analysis.

LRRK2 and Rab co-immunoprecipitation

Myc-tagged LRRK2 and V5-tagged Rabs (Rabla, 3c, 8a,
or 35) were co-transfected with Lipofectamine 2000 into
HEK-293 cells. Cells were lysed in lysis buffer (50 mM
Tris-HCI (pH 7.5), 0.5% TX-100, 150 mM NaCl, 0.5 mM
EGTA, protease inhibitor mixture (50 uM aprotinin, 50
UM leupeptin, and 50 uM pepstatin, and 0.2 mM PMSF)
and then centrifuged (15,000 g for 15 min). Supernatants
were incubated with anti-V5 or Myc antibodies coupled
to protein-G-agarose for overnight at 4°C and then
washed with PBS containing 150 mM NaCl and 0.1%
TX-100 for three times. The beads bound to proteins
were eluted by Laemmili sample buffer and subjected to
SDS-PAGE for western blot analysis.

Preparation of tissues for immunoblot

Whole brains from Lrrk2 knock-out or wild-type mice
(Fig. 3e), ventral midbrain regions from AAV-injected
mouse (Additional file 2: Figure S2), or various brain
regions (olfactory bulb, cortex, hippocampus, striatum,
ventral midbrain, cerebellum, and brain stem) from
C57/BL6 mice (Additional file 4: Figure S4) were
homogenized in lysis buffer (50 mM Tris-HCl (pH 7.5),
0.5% TX-100, 150 mM NaCl, 0.5 mM EGTA, Protease
Inhibitor Mixture (50 pM aprotinin, 50 uM leupeptin,
and 50 pM pepstatin), and 0.2 mM PMSF) with dounce
tissue grinder. The homogenates were incubated for
30 min on ice and then centrifuged for 15 min at 4 °C.
Protein levels of the supernatants were quantified with
BCA kit (Thermo Fisher Scientific, Waltham, MA, USA)
and western blot analysis was performed with anti--
Rab35 (1:1000, 11,329-2-AP, Proteintech, Rosemont, IL,
USA), anti-TH (1:2000, P40101, Pel Freez, Rogers, AK,
USA), and anti-actin antibodies.

Animals

All experiments involving animals were performed in ac-
cordance with the guidelines of the Institutional Animal
Care and Use Committee of the Korea Institute of Sci-
ence and Technology and Kyung Hee University.
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Pregnant ICR mice and C57BL6 were purchased from
DBL (Eumseong, South Korea) and housed in the Korea
Institute of Science and Technology Animal Facility.
C57BL6 mouse (7-weeks old) were acclimatized for one
week under conditions of controlled temperature (22 +
2°C), constant humidity, and a 12-h light/dark cycle, and
food and water were made available ad libitum. All
surgical procedures were conducted according to the
animal welfare guidelines approved by the Kyung Hee
University Institutional Animal Care and Use Committee
(KHUASP(SE)-16-074).

Primary cell culture and plasmid transfection

Cortical neurons were prepared from embryonic day
15.5 mice as described elsewhere. Cortices were dis-
sected in HBSS (Gibco, Waltham, MA, USA), followed
by digestion in papain (20 U ml™*, Worthington, Lake-
wood, NJ, USA) diluted in HBSS containing DNase
(10 U ml™ ', Sigma, St. Louis, MO, USA) for 40 min at
37 °C. Enzyme-digested cortices were washed three
times with MEM (Cellgro, Manassas, VA, USA) contain-
ing 10% heat inactivated fetal bovine serum (Hyclone,
Little Chalfont, UK) and dissociated in culture medium.
Dissociated neurons were then centrifuged to remove
the supernatant, and cells were plated in 24-well dishes
with 12 mm glass coverslips (5x 10* cells per well)
coated with 100 pg ml™! poly-D-lysine (Sigma, Carlsbad,
CA, USA). Cells were cultured in Neurobasal A (Gibco,
Waltham, MA, USA) medium containing 1% Glutamax
(Thermo Fisher Scientific, Waltham, MA, USA) and 2%
B27 (Thermo Fisher Scientific, Waltham, MA, USA)
supplements, and 1% penicillin/streptomycin. At one
day prior to transfection, media was replaced to Neuro-
basal A (Gibco, Waltham, MA, USA) medium contain-
ing 1% Glutamax and 2% B27 (Thermo Fisher Scientific,
Waltham, MA, USA) supplements to remove antibiotics.
At DIV 7, neurons were transfected with plasmid DNA
(Myc-tagged LRRK2, GFP-conjugated Rab, or EGFP as a
control) using Lipofectamine 2000 in Opti-MEM
reduced serum medium. Neurons were fixed at the
indicated time points and immunostained with either
anti-myc (for cells transfected with LRRK2 constructs)
or anti-GFP antibodies (for cells transfected with Rab
constructs) to identify transfected cells.

Immunostaining and fluorescence microscopy

Neurons were fixed in a solution containing pre-warmed
4% paraformaldehyde (PFA), 0.15% glutaraldehyde, and
0.2% Triton X-100 dissolved in PBS (37 °C, 20 min). Fixed
neurons were blocked in a blocking solution (2% BSA,
0.2% Triton X-100 in PBS). Primary (GFP, PA1-9533,
Thermo Fisher Scientific, Waltham, MA, USA, 1:500;
Flag, TA100023, OriGene, Rockville, MD, USA) antibodies
were diluted in the blocking solution and secondary
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antibodies (Alexa fluor 488, A11039, Invitrogen, Carlsbad,
CA, USA) in PBS. All secondary antibodies (1:400-500)
were incubated for 1 h at room temperature. After
extensive rinsing with PBS, coverslips were mounted onto
glass slides for observation. All coverslips in any one
experiment were fixed and processed together. Neurons
were viewed under an inverted microscope (Axio
Observer Z1, Carl Zeiss Microlmging, Inc, Jena,
Germany) equipped with epifluorescence optics. Images
were captured with a CCD camera controlled by the ZEN
software (Carl Zeiss Microlmaging, Inc., Jena, Germany).
A 10x objective (045 NA) was used to record whole
neurons. Images were cropped to more clearly show
neuronal cell morphology and improve conciseness of the
presentation.

LRRK2 toxicity assays

Transfected neurons were identified either by myc (for
wile-type and mutants of LRRK2) or GFP immunostaining
(for wild-types and mutants Rab proteins). Cells included
in the analysis were also positive for TuJ1 (Additional file
1: Figure S1). For Fig. 5, neurons expressing LRRK2 or
Rab of interest (identified by either anti-myc or anti-GFP
antibodies) that extended at least one neurite longer than
twice the cell body diameter were photographed, and the
length of the longest neurite in each neuron was manually
traced using the measure/curve application of Zen blue
software (Carl Zeiss Microimaging, Inc.). Neurite length
was analyzed from three (for 1 and 7 day point) or five
(for 2 day point) independent experiments, and in any one
experiment, at least 20 transfected neurons per construct
were measured. For Fig. 6, neurons were also subjected to
TUNEL staining (C10246, Invitrogen, Carlsbad, CA, USA)
in accordance with the manufacturer’s protocol. For
quantification, images were taken from 15 to 20 (10X)
randomly selected fields per each condition using a Zeiss
Axiocam fluorescent microscope with Axiovision 6.0 soft-
ware. The percentage of neurons expressing the plasmid
of interest exhibiting TUNEL-positive nuclei was quanti-
fied. For Fig. 6a and b, six independent experiments were
performed, and in any one experiment at least 40
transfected neurons per construct were counted.

Generation of AAV constructs and virus particles

A plasmid for AAV vectors with the human synapsin 1
gene promoter (hSyn) was used for the expression of
eGFP alone, or eGFP and hRab35 WT, hRab35 T72A, or
hRab35 T72D via P2A peptide-mediated co-expression
system. AAV vectors were produced according to the
protocol provided by the Salk Institute viral vector core
facility (http://vectorcore.salk.edu/index.php) with slight
modifications. In brief, HEK-293 cells were co-
transfected with a mixture of three plasmids, one AAV
plasmid, the pHelper plasmid (Agilent Technologies,
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Santa Clara, CA, USA), and the serotype 1 plasmid
(Vector Core of the University of Pennsylvania), using
calcium phosphate. At 72 h after transfection, cells were
harvested and lysed by sonication. Then, AAV vectors
were collected from the cell lysate by gradient ultracen-
trifugation using a Beckman NVT90 rotor at 183000 g
for 47 min, dialyzed in PBS with D-sorbitol, concen-
trated by centrifugal filter devices (Millipore, Billerica,
MA, USA), and stored at -80 °C. The AAV titer was esti-
mated by quantitative PCR of DNase-I-treated AAV
(2-4 x 10" vector genome copies/ml).

Virus injection and stereological assessment

Stereotaxic injections were performed on 8-week old mice.
AAV-hSyn-P2A-eGFP, AAV-hSyn-hRab35 WT-P2A-eGFP,
AAV-hSyn-hRab35 T72A-P2A-eGFP, or AAV-hSyn-
hRab35 T72D-P2A-eGFP was injected unilaterally into the
substantia nigra (A.P. -3.1. M.L. -1.4, D.V. -4.5) (0.3 pl per
site) at a rate of 0.3 pl per 10 min with a 10 pl Hamilton
syringe driven by a syringe pump. For each condition, five
animals were injected. Three weeks after virus administra-
tion, the mice were anesthetized with pentobarbital (50 mg
kg™ !, intraperitoneal injection) and perfused with PBS
followed by 4% PFA (w/v in PBS). Brains were post-fixed
with 4% PFA overnight and cryoprotected in 30% sucrose
(w/v in PBS) overnight. Forty um coronal sections were
made throughout the brain including striatum or substan-
tia nigra, and every fourth section was utilized for analysis.
Sections were stained with rabbit polyclonal anti-tyrosine
hydroxylase (TH) (1:2000, P40101, Pel Freez, Rogers, AK,
USA) antibodies and visualized with biotinylated goat anti-
rabbit IgG, followed by streptavidin-conjugated horseradish
peroxidase (HRP) (Vectastain ABC kit, Vector Laborator-
ies, Burlingame, CA, USA). Positive immunostaining was
visualized with 3,3'-diaminobenzidine (DAB, Sigma, St.
Louis, MO, USA) after reaction with hydrogen peroxide
(DAB kit, Vector Laboratories). For Nissl staining, sections
were stained with 0.5% cresyl violet acetate (Sigma, St.
Louis, MO, USA). Sections were sequentially dehydrated
with in 25, 50, 75, 90, and 100% ethanol and cleared in
xylene. Total numbers of TH-or Nissl-positive neurons in
the substantia nigra pars compacta were counted using the
optical fractionator probe of Stereo Investigator software
(MicroBrightfield, Williston, VT, USA). Experimenters
were blinded to the treatment during stereological
counting. For immunohistochemistry, fixed brain sections
including the substantia nigra were immunostained with
anti-GFP (1:1000, A11120, Life Technologies, Carlsbad,
CA, USA) and anti-TH (1:1000, abl12, Abcam,
Cambridge, UK) antibodies overnight at 4 °C. Secondary
antibodies, Alexa 488 (1:1000, A11029, Life Technologies,
and Carlsbad, CA, USA) and Alexa 568 (1:1000, A10042,
Life Technologies, Carlsbad, CA, USA) were incubated for
1 h at room temperature. After extensive rinsing with PBS,
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sections were mounted onto glass slides for observation.
Sections were viewed under an inverted microscope (LSM
700 confocal laser scanning microscope (Carl Zeiss
Microlmging, Inc., Jena, Germany)).

Fractionation of membrane

Membrane fraction was prepared, as described previously
[30]. V5-tagged Rab35 wild-type, T75A, or T75D mutants
were transfected with Lipofectamine 2000 into HEK-293.
Cells were washed once with PBS and scraped in lysis
buffer containing 0.25 M sucrose, 1 mM EDTA, 10 mM
Hepes-NaOH (pH 7.5), 1 mM MgCl, and protease inhibi-
tors. Cell lysates were passed through a 27 gauge needle
10 times and centrifuged at 1000 g for 15 min at 4 °C.
Protein levels were quantified using the BCA kit (Thermo
Fisher Scientific, Waltham, MA, USA). Equal amount of
protein from each sample was loaded to centrifuge tubes
(Beckman Coulter, Indianapolis, IN, USA) and centrifuged
using an SW 32 Ti swinging bucket rotor (Beckman
Coulter, Indianapolis, IN, USA) for 1 h at 100,000 g at 4 °
C. The pellets were rinsed with lysis buffer and
centrifuged for 1 h at 100,000 g at 4 °C. Pellets were
resuspended in Laemmini sample buffer and subjected to
SDS-PAGE. Western blot analysis was performed with
anti-V5, anti-caveolin-1 (1:1000, 3267, Cell Signaling,
Danvers, MA, USA), anti-EEA1 (1:1000, 3288, Cell Signal-
ing, Danvers, MA, USA), anti-GOPC (1:1000, 8576, Cell
Signaling, Danvers, MA, USA), and anti-Hsp90 (1:1000,
ab13492, Abcam, Cambridge, UK) antibodies.

Statistics

All data presented in this study were either averages or
representative data from at least three independent
experiments, except the mass spectrometry data. The
number of independent experiments and sample size are
indicated under each section of the Methods and in the
figure legends. Statistical analyses were conducted using
the software Graph-Pad Prism (GraphPad Software 7,
Inc.). Prior to determining statistical significance,
Shapiro-Wilk test was performed to assess normality.
For Figs. 4, 5, and 6, one-way ANOVA with Dunnett’s
post hoc test was performed, and for Fig. 7, one-way
ANOVA was followed by Tukey’s post hoc test. Data
were expressed as mean * SD. *, **, *** and **** in the
figures denote p<0.05, 0.01, 0.001, and 0.0001,
respectively.

Results

A targeted screen for LRRK2 substrates using
recombinant Rab GTPases

To investigate which of the Rab GTPases family are direct
substrates of LRRK2, we generated GST-fusion proteins for
forty-five human Rab GTPases by Gateway cloning and per-
formed in vitro kinase assays with wild-type LRRK2 (Fig. 1a).



Jeong et al. Molecular Neurodegeneration (2018) 13:8

Page 7 of 17

LRRK2 WT + Rab GTPases

- s gy |

N
o

Rab phosphorylation (a.u.)
-
o

Rab1a WT
+ LRRK2

Rab8a WT
+ LRRK2

@ 2
N
LRRK2: ¥ & &

)
® N &u\"
& &S

[PZ]LRRK2

-

[p*]Rab

-
-

CBB LRRK2 |

| [ |

CBB Rab ---.‘ |.---||>—4 et i s

|-—-d‘
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In any one independent experiment, we included all 45 Rab
GTPases and performed the in vitro kinase assays side by
side to compare phosphorylation efficiencies. The extent of
phosphorylation on each Rab was calculated by normalizing
Rab phosphorylation against both the amount of Rab
GTPases determined by Coomassie brilliant blue staining
and the level of LRRK2 autophosphorylation determined by
standard autoradiography as described in Methods. In vitro
kinase assay revealed that LRRK2 directly phosphorylated a
subset of Rab GTPases to varying degrees. The most prom-
inent substrates that were strongly phosphorylated by
LRRK?2 included Rabla, 1b, 3c, 8a, 8b, and 35. We found
that Rab5a, 9b, 10, and 23 were also phosphorylated but to a
much lower extent (Fig. 1a and b). Interestingly, the level of
Rab phosphorylation was well correlated with their sequence
homology. Rab GTPase family can be classified into ten sub-
families based on their distinct subfamily-specific sequence

motifs [31]. Rabla, 1b, and 35 are classified as Rab1 subfam-
ily, and Rab8 subfamily is localized close to Rabl subfamily
in the phylogenic tree [31]. Rab3 subfamily is also in a
relatively proximate position with Rabl and 8 families com-
pared to other subfamilies [32]. With Rabla, 3c, 8a, and 35,
which showed discernable phosphorylation in the initial
screening, we performed additional in vitro kinase assays in
the presence of kinase-dead LRRK2-D1994A or pathogenic
LRRK2-G2019S that has increased kinase activity (Fig. 1c).
As expected, none of the Rabs were phosphorylated by
LRRK2-D1994A, while LRRK2-G2019S induced stronger
phosphorylation compared to wild-type LRRK2.

Identification of LRRK2 phosphorylation sites in Rab GTPases
To identify the phosphorylation site on Rab GTPases,
tandem mass spectrometry (MS/MS) analysis was
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performed. Incubation of Rab8a with wild-type LRRK2,
followed by MS/MS analysis revealed T72 as a potential
phosphorylation site (Fig. 2a). This threonine residue,
which is located in the switch II region of Rab8a, is
highly conserved among multiple Rab GTPases and is
found in all of the Rabs that we identified as LRRK2
substrates in the in vitro kinase assay (Fig. 2b). Through
unbiased screening of an oriented peptide library, a
previous study suggested F/Y-X-T-X-R (underlined T is
the phosphorylation site) sequence as a LRRK2 phos-
phorylation motif, which partially overlaps with the
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presumed phosphorylation site in Rab8a. To confirm
that T72 in Rab8a was the LRRK2 site, we substituted
the threonine residue to alanine (Rab8a-T72A) and per-
formed in vitro LRRK kinase assay (Fig. 2c). LRRK2
failed to phosphorylate Rab8a-T72A, verifying that the
predicted site was indeed the primary phosphorylation
site. Next, to examine if LRRK2 also phosphorylated the
equivalent threonine residues in other Rab GTPases, we
mutated the corresponding threonine in each Rab and
performed in vitro LRRK2 kinase assays (Fig. 2c). Substi-
tution of the putative LRRK2 phosphorylation site to
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either alanine (TA) or aspartate residue (TD) in Rabla,
3¢, 8a and 35 abolished phosphorylation in all Rabs
tested, verifying that the conserved threonine residues
were the major LRRK2 phosphorylation sites.

Phosphorylation of Rab by LRRK2 in cells

To extend the findings from the in vitro kinase assays,
we first investigated whether LRRK2 interacts with Rabs
in cells. For co-immunoprecipitation analysis, we ectopi-
cally expressed myc-tagged LRRK2 along with the V5-
tagged Rab of interest in human embryonic kidney
(HEK)-293 cells. Immunoprecipitation of cell lysates
with anti-myc antibodies, followed by immunoblotting
with anti-V5 antibodies revealed that LRRK2 was bound
to Rabla, 3¢, 8a, and 35 (Fig. 3a). Reciprocal co-immu-
noprecipitation experiments using antibodies against V5
for immunoprecipitation, followed by immunoblotting
with anti-myc antibodies confirmed that all of the Rabs
tested physically interacted with LRRK2.

To validate the in vitro phosphorylation of Rabs in
cells, we raised phospho-specific antibodies against a
phosphopeptide TAGQERFRpTITSSYYRG, correspond-
ing to the highly conserved sequence surrounding the
LRRK2 site in Rabla (see Fig. 2b). In HEK-293 cells,
phosphorylation of Rabla, 8a, and 35 was readily
detected when we co-expressed both LRRK2 and the
Rab of interest, but not when we overexpressed either
LRRK2 or Rab (Fig. 3b and c). Despite the observation
that LRRK2 directly phosphorylated Rab3c in vitro, we
failed to detect phosphorylation of Rab3c from cell
lysates (data not shown), which might be because of a
slightly different amino acid sequence close to the
LRRK2 site (note the tyrosine residue in Rab3c instead
of phenylalanine in all other Rabs at position -2 with
respect to the LRRK2 site). Interestingly, when we co-
transfected Rab10 and LRRK?2, the extent of phosphoryl-
ation of Rabl0 was comparable to those of Rabla, 8a,
and 35 (data not shown), despite the observation that
Rab10 was not a prominent substrate of LRRK2 in the
in vitro kinase assay (see Fig. 1a). When we co-trans-
fected HEK-293 cells with phosphomutants (phosphomi-
metic TD or phosphodeficient TA mutant) of the Rab of
interest along with wild-type LRRK2, we could not de-
tect any phosphorylation (Fig. 3b), confirming that the
conserved threonine sites in Rab GTPases were the tar-
gets of LRRK2 in cells. Furthermore, the extent of phos-
phorylation of Rabla, 8a, and 35 was enhanced by
LRRK2-G2019S compared to wild-type LRRK2, while
none of the Rabs were phosphorylated by kinase-dead
LRRK2-D1994A (Fig. 3c). Together, these results con-
firm the specificities of the phospho-Rab antibodies that
we generated, and more importantly, provide unambigu-
ous evidence that Rabla, 8a, and 35 are phosphorylated
by LRRK2 both in vitro and in cells.
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To examine phosphorylation of Rab proteins at the en-
dogenous level, we first examined the effects of LRRK2
inhibitors in NIH-3T3 fibroblast cells, which express
endogenous LRRK2. More specifically, we treated NIH-
3T3 cells with two different inhibitors of LRRK2, either
LRRK2-IN-1 (1 pM) or MLi-2 (1 uM), and examined the
changes in Rab phosphorylation using the aforemen-
tioned phospho-specific Rab antibodies that we gener-
ated (see Fig. 3b, c). Inhibition of endogenous LRRK2 by
the two inhibitors was confirmed by immunoblotting
with phospho-specific LRRK2 (phospho-serine 935) anti-
bodies, and importantly, we confirmed that LRRK2-IN-1
or MLi-2 markedly reduced phosphorylation of Rab (Fig.
3d). Furthermore, we also confirmed that the level of
phospho-Rab was substantially diminished in brain ly-
sates from Lrrk2 knock-out mice compared to wild-type
(Fig. 3e). Collectively, these results provide strong sup-
port for the notion that endogenous Rab proteins are
phosphorylated by endogenous LRRK2.

Phosphorylation of Rab by LRRK2 affects GTP-binding

To elucidate the functional consequence of LRRK2-
induced Rab phosphorylation, we investigated the
changes in GTP-binding ability of Rab GTPases after
LRRK2 phosphorylation. Rab GTPases cycle between
active (GTP-bound) and inactive (GDP-bound) states,
which is controlled by three groups of regulatory
proteins: GTPase-activating proteins (GAPs), guanine
nucleotide exchange factor (GEFs), and guanine
nucleotide-dissociation inhibitors (GDIs). The conserved
threonine residue (LRRK2 site) resides in the switch II
region, which undergoes a major conformational transi-
tion between GDP- and GTP-bound states and coordi-
nates the association with specific regulatory molecules
[33]. We tested whether the mutation of the threonine
residue affected the GTP hydrolysis property of Rab
GTPases by using hydrolyzable GTP agarose, reflective
of GTPase activity at the time of precipitation. For all
Rabs tested, GTP-binding was reduced by substituting
the threonine residue to alanine but increased by
replacing it to aspartate (Fig. 4a). When LRRK2-G2019S
was co-expressed with the Rab of interest, GTP-binding
was increased compared to wild-type LRRK2, whereas
overexpression of LRRK2-D1994A had little effect on
GTP-binding (Fig. 4b). These results suggest that phos-
phorylation of Rab proteins by LRRK2 kinase regulates
the GDP/GTP exchange and that hyperactivation of
LRRK2 kinase increases GTP-bound Rabs in cells.

Mutations in the LRRK2 site in Rab GTPases cause
neurodegeneration in cortical neurons

Our results described above and those reported by others
[29] suggest that Rab GTPases are authentic substrates of
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LRRK2. However, physiological consequence of such
phosphorylation in neurons, and more importantly, its
relevance to neurodegeneration remains unknown. In
neurons, shortening or fragmentation of neurites has often
been recognized as the hallmark of neurotoxicity, and
pathogenic LRRK2 mutants induce neurite shortening,
which ultimately leads to cell death [9]. To evaluate the
effects of phosphorylation of Rab proteins by LRRK2 on
neurotoxicity, cortical neurons were transfected with wild-
type or mutants of LRRK2 or Rab GTPases, and neurotox-
icity was examined by quantification of neurite length
(Fig. 5) and TUNEL assay (Fig. 6). To avoid the possible
effects on neurite development, we transfected the neu-
rons with the plasmids at DIV 7, when neurons were fully
polarized and matured. Consistent with a previous report
[9], overexpression of LRRK2-G2019S but not the wild-
type led to a dramatic shortening of neurites (Fig. 5) and
ultimately to cell death (see Fig. 6). In the case of Rabla,
3¢, and 35, phosphomutants induced neurotoxicity, which
was most severe in neurons expressing Rab35 mutants
(Fig. 5b). At one day after transfection, neurotoxicity in-
duced by phosphomutants of Rab35 was already evident,
and at two days after transfection, phosphomutants of
Rabla and 3c also started to induce neurite shortening. By
seven days after transfection, all of the mutants of Rab but
none of the wild-types tested caused neurite shortening.
Interestingly, phosphomutants of Rab8a did not exert
overt neurotoxicity at early time points (Fig. 5b) despite
that the extent of Rab8a phosphorylation induced by
LRRK2 in the in vitro kinase assay was comparable to
other Rabs (see Fig. 1a).

In the TUNEL assay, at 2 days after transfection, TA
mutants of Rabla, 3¢, and 35, and the TD mutant of
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Rab35 caused neurotoxicity, which became much more
prominent at 7 days after transfection (Fig. 6). By that
time, TD mutants of Rabla, 3c, and 35 and the QL
mutant of Rab35 also resulted in neurodegeneration.
Notably, neurodegeneration induced by phosphomutants
of Rab35 was most severe compared to mutants of other
Rabs, consistent with the effects on neurite shortening.

Dysregulated phosphorylation of Rab35 causes

degeneration of dopaminergic neurons in vivo

To test whether dysregulation of the LRRK2 site in Rab in-
duces neurodegeneration in vivo, we selected Rab35 whose
mutation resulted in the most potent neurodegeneration in
culture. We constructed adeno-associated viral (AAV)
vectors in which synapsin promoter derives the expression
of wild-type or mutants (T72A or T72D) of Rab35. To
facilitate visualization of Rab35-expressing cells, Rab

proteins were linked to enhanced green fluorescence pro-
tein (eGFP) via a self-cleaving P2A peptide. AAV-hSyn-
Rab35 WT-P2A-GFP (AAV-Rab35 WT), AAV-hSyn-
Rab35 T72A-P2A-GFP (AAV-Rab35 T72A), AAV-hSyn-
Rab35 T72D-P2A-GFP (AAV-Rab35 T72D) or AAV-hSyn-
P2A-GFP as a control (AAV-control) was stereotaxically
injected into the substantia nigra compacta of adult mice
(Fig. 7). At three weeks post injection, we dissected the
infected brain and quantified the loss of dopaminergic neu-
rons by measuring TH immunoreactivity and Nissl staining
in the substantia nigra pars compacta (Fig. 7). AAV-Rab35
T72A and AAV-Rab35 T72D caused 43.1+11.7% and
27.7 + 8.0% loss of TH-positive neurons and 47.1 + 10.4%
and 34.3 +4.8% loss of Nissl-positive neurons in the sub-
stantia nigra, respectively (Fig. 7b and c). By contrast, the
number of TH- or Nissl-positive neurons in the substantia
nigra was not affected by injection of AAV-hSyn-Rab35
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WT. We verified that the expression levels of the different
AAV-Rab35 constructs were similar in the ventral
midbrain area containing the substantia nigra region
(Additional file 2: Figure S2a) and we also confirmed the
expression of AAV-hSyn-Rab35 WT, AAV-hSyn-Rab35
T72A, and AAV-hSyn-Rab35 T72D in TH-positive neurons
of the substantia nigra after intracranial injection of AAVs
(Additional file 2: Figure S2b). Together, these results

suggest that dysregulation of Rab35 phosphorylation causes
degeneration of dopaminergic neurons in vivo.

Discussion

Previous studies on the subcellular localization and func-
tion of LRRK2 suggest that LRRK2 might play a role in
intracellular vesicle trafficking. Several groups have re-
ported physical, genetic or functional interactions between
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LRRK2 and a number of Rab GTPases, which serve as core
regulators in perhaps all aspects of vesicle trafficking [18,
19, 26, 28, 29, 34]. Here, we performed a screening with 45
human Rab GTPases to examine phosphorylation of Rabs
by LRRK2. Despite the fact that the switch II regions of
Rab family members overlap significantly, we found that
LRRK2 phosphorylated only a subset of Rab GTPases at a
conserved threonine residue in the switch II region and
that the extent of phosphorylation was quite variable. The
strongly phosphorylated Rab proteins (Rabl, 3, 8, and 35)
harbor highly conserved residues surrounding the LRRK2
site (Rabla-T75, Rab3c-T94, Rab8a-T72, Rab35-T72) (see
Fig. 2a). During revision of the current paper, Steger et al.
[35] reported that LRRK2 directly phosphorylated Rab3, 5,
8, 10, 12, 29, 35, and 43 by performing a systematic prote-
omic analysis of HEK-293 cells overexpressing both LRRK2
and the Rab of interest. Our in vitro kinase assay revealed
an overlapping, but not identical list of Rabs. In this study,
we took a step forward and investigated the physiological
consequence of such phosphorylation and found that dys-
regulation of the LRRK2 site in Rabla, 3¢, and 35 induced
neurotoxicity in primary cortical neurons. Furthermore,
intracranial injection of AAV expressing phosphomutants

of Rab35 resulted in profound neurodegeneration in vivo.
To the best of our knowledge, this study is the first to
report that dysregulation of a direct substrate of LRRK2
causes neurodegeneration of dopaminergic neurons in the
mammalian brain.

Rab GTPases interconvert between GTP- and GDP-
bound states, which is regulated by their intrinsic molecu-
lar property and interaction with several types of specific
effector proteins, including GEFs, GAPs, and GDIs. Phos-
phorylation of Rab might add an extra layer of regulation
by altering the function of the Rab GTPase itself or that of
its interacting partners [24, 29]. Several kinases can phos-
phorylate and regulate Rab family proteins: phosphoryl-
ation of Rab4 by p34°““® has been postulated to control its
localization [36] and phosphorylation of Rab6c by protein
kinase C to increase its affinity for GTP [37]. Rab5a, b, and
¢ are differentially recognized by distinct kinases, for
example, Rab5a by extracellular-regulated kinase 1 and
Rab5b by p34°“? and LRRK?2 [34, 38], and phosphorylation
of Rab5b by LRRK2 on T6 increases GTP hydrolysis [34].
Rab8a has been suggested as a substrate of LRRK2, and the
non-phosphorylatable Rab8a-T72A mutant exhibits in-
creased binding to various regulatory proteins, including
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Fig. 7 Phosphomutants of Rab35 induce degeneration of
dopaminergic neurons in the substantia nigra. a Tyrosine hydroxylase
(TH) immunostaining in the substantia nigra at 3 weeks after
adeno-associated virus (AAV)-mediated delivery of wild-type (WT)
or phosphomutants (T72A or T72D) of Rab35. AAV-eGFP was injected
as a control. b, ¢ Quantification of TH- (b) and Nissl-positive (c) neurons
in the substantia nigra in the contralateral and ipsilateral side. Data are
mean + SD (n=5). * p< 005, ** p< 001, ** p <0001, and *** p <
0.0001, ns. statistically not significant; one-way ANOVA followed by
Tukey's post hoc analysis. Scale bar, T mm

GDI1/2, a GEF protein Rabin-8, and a GAP protein
TBC1D15 [29]. Our results also point to the same threo-
nine site in Rabla, 3¢, 8a, and 35 being phosphorylated by
LRRK2. When we monitored GDP/GTP-bound status in
cells, we observed enhanced GTP-binding with phospho-
mimetic mutants and reduced GTP-binding with non-pho-
sphorylatable mutants, for all the Rabs tested. Consistently,
the level of Rabs bound to GTP was augmented by
LRRK2-G2019S but was diminished by LRRK2-D1994A
compared to wild-type LRRK2. At this point, it is not clear
whether the phosphorylation regulated the intrinsic
GTPase activity of Rab proteins or the binding with inter-
acting partners, such as GAPs, GEFs or GDIs, which con-
trol GDP/GTP exchange. Nevertheless, our results suggest
that LRRK2-induced phosphorylation results in inhibition
of the GTP hydrolysis activity of Rab in cells. Alterations in
nucleotide binding and hydrolysis induced by pathogenic
LRRK2 might disrupt the balance between the cytosolic
and membrane-bound pool of Rab proteins, and thereby
cause defects in intracellular vesicle trafficking. GDP-
bound Rab proteins are prone to extraction from mem-
branes by Rab GDIs, and we found that the membrane-
associated fraction of Rab35-T72A was reduced as com-
pared to the wild-type. However, membrane-associated
fraction of Rab35-T72D appeared to be similar to that of
wild-type in our biochemical fractionation method, which
enriched caveolin-1-positive plasma membrane fraction
(Additional file 3: Figure S3). Further work is needed to de-
termine if phosphorylation by LRRK2 stabilizes Rab pro-
teins in their GTP-bound conformations and traps them in
other membranous location(s).

Disruption of the LRRK2 site in Rab35 resulted in the
most severe neurodegeneration compared to that induced
by other Rabs, and phosphomutants of Rab35 were
sufficient to cause degeneration of dopaminergic neurons
in vivo. Notably, despite that phosphomimetic and
phosphodeficient mutants showed opposite effects on
GTP/GDP binding, such mutations induced neurodegener-
ation to a comparable degree, suggesting that neurodegen-
eration might be caused by impaired homeostasis, which
would after the balance of Rab in its localization as well as
activation and recruitment of downstream effectors. Rab35
has a single ortholog in human [31], and its activity is
tightly controlled by at least four different DENN
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(differentially expressed in normal and neoplastic cells)
family of GEFs and five different TBC (Tre2/Bub2/Cdc16)
family of GAPs [39]. Rab35 has been shown to regulate di-
verse cellular processes, including endocytic recycling [40],
exosome release [41], cytokinesis [42], and actin remodeling
[30]. In the brain, Rab35 is expressed in multiple regions
(Additional file 4: Figure S4), and in neurons, Rab35 seems
to control neurite outgrowth during development [43—46]
and synaptic vesicle trafficking [47]. However, little is
known about its role in neurodegeneration. Interestingly,
Rab35 was identified as a potential serum biomarker for
PD through the analysis of proteomic profiles of PD pa-
tients, and Rab35 was also elevated in the substantia nigra
obtained from multiple PD animal models, including
MPTP-, rotenone-treated mice, and LRRK2-R1441C or
-G2019S transgenic mice [48]. These results together with
ours imply that impaired function of Rab35, perhaps in part
through dysregulated phosphorylation, might contribute to
neurodegeneration in PD. Further studies are needed to
examine the extent, if any, to which the cellular processes
known to be regulated by Rab35 are altered in LRRK2-
associated neurodegeneration and PD pathogenesis.

Neurons are highly polarized cells and have extremely ar-
borized cellular architecture, which imposes a substantial
burden on the trafficking system. Thus, it is not surprising
that intracellular trafficking deficits are associated with a
number of neurodegenerative diseases, and PD is no ex-
ception. Dysfunction of Rab GTPases and impaired mem-
brane traffic might contribute to the onset and progression
of PD. Loss of Rab39b causes early-onset PD and Rab29
resides in the PARKI6 non-familial risk locus [49-52].
Moreover, certain Rabs have been suggested to interact
with and modulate the function of key pathogenic proteins,
such as LRRK2, a-synuclein and PTEN-induced kinase 1
[17-19, 26, 29, 53-57]. Interestingly, overexpression of
Rabl, 3a, and 8a, which we (this study) and others [29]
suggest as LRRK2 substrates, could rescue o-synuclein-
induced cytotoxicity in cell and animal model of PD [54,
55], implying that Rab GTPases might be involved in mul-
tiple pathways that play crucial roles in the pathogenesis of
PD. Therefore, further study of the Rab GTPases will not
only provide insight into how intracellular membrane dy-
namics are orchestrated, but also facilitate the identifica-
tion of molecules or pathways that can serve as therapeutic
targets for the treatment of PD.

Conclusions

By performing in vitro LRRK2 kinase assays with forty-
five human Rab GTPases, here we identify a subset of Rab
GTPases, including previously identified as well as novel
Rabs, such as Rab35, as authentic substrates of LRRK2.
We provide evidence that phosphorylation of Rab
GTPases by LRRK2 controls GDP/GTP exchange in cells
and that dysregulation of Rab phosphorylation in the
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LRRK2 site causes neurodegeneration in primary neurons.
Furthermore, we show that intracranial injection of AAV
expressing phosphomutants of Rab35 into the substantia
nigra induces profound degeneration of dopaminergic
neurons in vivo. These results suggest that Rab GTPases
might mediate LRRK2 toxicity in the etiology of PD.

Additional files

Additional file 1: Figure S1. Immunostaining of cortical neurons
transfected with Rab35 mutants. Representative images of embryonic day 15.5
cortical neurons expressing mutants (T72A, T72D or Q67Q) of GFP-conjugated
Rab35. Neurons were fixed at one day after transfection and immunostained
with anti-GFP, anti-smi312 (axonal marker), and anti-GFAP (astrocyte marker)
antibodies. Scale bar, 100 um. (PPTX 9498 kb)

Additional file 2: Figure S2. Expression of AAV-Rab35 WT and
phosphomutants after intracranial injection of AAV. At one week after
intracranial injection of AAV-eGFP (control), AAV-Rab35 WT, AAV-Rab35 T75A
or AAV-Rab35 T75D into the substantia nigra, mouse brains were prepared
for immunoblot (a) and immunohistochemistry (b). (@) Ventral midbrain was
dissected from the AAV-injected hemisphere and the tissue was homoge-
nized. Immunoblots were performed with anti-Rab35, anti-TH, and anti-actin
antibodies. Exogenous and endogenous Rab35 are indicated by red and
blue arrowhead, respectively. (b) Cryosections of AAV-injected brains
including the substantia nigra region were immunostained with anti-GFP
(green) and anti-TH (red) antibodies. Scale bar, 200 um. (PPTX 3143 kb)

Additional file 3: Figure S3. Localization of Rab35 WT and
phosphomutants. (a) HEK-293 cells were transfected with V5-tagged
Rab35 WT or phosphomutants (T72A or T72D). At 48 h after transfection,
cells were harvested and membrane fractionation was performed as
described in Methods. Prepared membrane fractions were subjected to
SDS-PAGE and immunoblotting with anti-caveolin-1 (plasma membrane
marker), anti-EEAT (early endosomal marker), anti-GOPC (golgi marker),
and anti-Hsp90 (cytosol marker) antibodies. 2.5% of total lysates and 30%
of membrane fractions were loaded for each immunoblot. (b) Quantification
of Rab35 protein levels normalized against input level of Rab35. Data are
mean + SD (n=3). * p < 0.05; one-way ANOVA followed by Dunnett’s
multiple comparison post hoc test. (PPTX 1972 kb)

Additional file 4: Figure S4. Expression of Rab35 in adult mouse brain.
Analysis of Rab35 protein expression by immunoblot in various brain
regions of adult mouse. (PPTX 1820 kb)
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