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Abstract

Background: Based on associations between sleep spindles, cognition, and sleep-dependent memory processing,
here we evaluated potential relationships between levels of CSF ARy, P-tau, and T-tau with sleep spindle density
and other biophysical properties of sleep spindles in a sample of cognitively normal elderly individuals.

Methods: One-night in-lab nocturnal polysomnography (NPSG) and morning to early afternoon CSF collection
were performed to measure CSF A4, P-tau and T-tau. Seven days of actigraphy were collected to assess habitual
total sleep time.

Results: Spindle density during NREM stage 2 (N2) sleep was negatively correlated with CSF A4, P-tau and T-tau.
From the three, CSF T-tau was the most significantly associated with spindle density, after adjusting for age, sex and
ApoE4. Spindle duration, count and fast spindle density were also negatively correlated with T-tau levels. Sleep
duration and other measures of sleep quality were not correlated with spindle characteristics and did not modify
the associations between sleep spindle characteristics and the CSF biomarkers of AD.

Conclusions: Reduced spindles during N2 sleep may represent an early dysfunction related to tau, possibly
reflecting axonal damage or altered neuronal tau secretion, rendering it a potentially novel biomarker for early
neuronal dysfunction. Given their putative role in memory consolidation and neuroplasticity, sleep spindles may
represent a mechanism by which tau impairs memory consolidation, as well as a possible target for therapeutic
interventions in cognitive decline.
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Background

With 10% of adults over the age of 65 suffering from de-
mentia [1, 2] and this number projected to double by
2050 [3], understanding the factors responsible for cog-
nitive impairment is of critical importance [4]. Amyloid
beta (AP) plaques and neurofibrillary tangles (NFTs) are
two key pathological processes that are thought to lead
to cognitive deterioration in Alzheimer’s disease (AD).
Cerebrospinal fluid (CSF) Ap and tau concentrations
have been used extensively as biomarkers of AD path-
ology and found to correlate with plaques and tangles at
post-mortem [5-8]. Emerging evidence suggests that the
sleep-wake cycle directly influences their levels in older
adults [9, 10]. Specifically, low NREM stage 3 (N3) slow
wave activity (SWA) is associated, in healthy midlife and
young-old, with trait-markers of high cerebrospinal fluid
(CSF) AP [11, 12], while active disruption of slow wave
sleep (SWS) results in state-dependent CSF A peptide
increases within subjects [13]. Sleep disruption has also
been associated with increased tau pathology in both
animal models [14—17] and humans [18], but the precise
mechanisms are not known. Unlike A, associations be-
tween poor SWS and CSF tau have not been reported
[12, 13], suggesting that disruption in other sleep oscilla-
tions could be linked to tau pathology.

Cortical sleep spindles are 11-16 Hz bursts of activity
generated within the thalamo-cortical network that
occur during N2-3 and have been defined as slow or
fast based on their spectral frequency [19]. A decrease in
sleep spindle activity is a good candidate to be associated
with tau pathology for several reasons. First, early struc-
tures affected by NFTs include sleep/wake regulating
centers such as the locus coeruleus [20], suggesting that
changes to sleep architecture might be one of the early
outward manifestations of tau pathology. Second, sleep
spindles are known to decline with age [21, 22], with a
specific decline in fast spindles in mild cognitive impair-
ment (MCI) and AD that predicts low MMSE scores
[23]. Third, sleep spindles are also associated with
sleep-dependent improvement in motor learning [24—
27] and memory [28-34], with differential roles for fast
and slow spindles depending on age [35-37]. A decrease
in these neuroplasticity-promoting processes could ren-
der a greater vulnerability to the spread of tau pathology.
Therefore, the mutual associations of cognition with
both tau and sleep spindles raises the possibility of ties
between them, particularly in older adults. Indeed, NFT
load corresponds more closely to cognitive status than
AP plaques [38], and both AD and MCI patients show
significant spindle density reductions [23]. In this study,
we sought to determine the relationship between sleep
spindle activity in N2 and CSF biomarkers in a popula-
tion of cognitively normal older adults. We carried out
additional analyses looking into other spindle biophysical
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properties such as spindle count, duration, peak fre-
quency, and slow/fast spindle density. We also explored
whether sleep quality measured with polysomnography
or habitual sleep duration measured with actigraphy is
associated with CSF AD biomarkers.

Methods

Participants and clinical evaluation

Fifty subjects were recruited from a pool of healthy eld-
erly participating in NIH-supported longitudinal studies
on normal aging and biomarkers of AD at NYU. All sub-
jects had >12 years of education, received the standard-
ized Uniform Data Set II diagnostic assessment [39], and
were non-depressed (as defined by Geriatric Depression
Scale < 6), cognitively normal and in good overall health.
Cognitive tests included to measure declarative memory
were subtests of the Guild Memory Scale: verbal paired
associates, delayed paragraph recall subtest and the
Wechsler Memory Scale Revised: Logical Memory sub-
tests (Logic I and II). A subtest of the Wechsler
Intelligence Scale Revised was added to assess working
memory (digits backward). The Digit Symbol Substitu-
tion Test (DSST) was used to evaluate psychomotor
speed. Trails A and digits forward were included to
evaluate attention and Trails B Test was included to
evaluate executive function. Category fluency (animals
and vegetables) and the Boston Naming Test were used
to evaluate language. The Mini Mental State Examin-
ation was included as an additional global measure of
cognition. Cognitive performance data were normalized
using z-scores adjusting for age, sex, race, and years of
education as previously reported [40]. In addition, all
subjects had clinical labs to fulfill eligibility criteria and
underwent structural brain MRI. Individuals with docu-
mented obstructive sleep apnea (OSA), defined as an
Apnea Hypopnea Index with 4% Desaturation [AHI4%]
>15 per hour, active continuous positive airway pressure
(CPAP) use, or history of significant conditions that may
affect brain structure or function such as stroke, uncon-
trolled diabetes, traumatic brain injury, lung diseases,
drug abuse or MRI evidence of intracranial mass or in-
farcts were excluded. Both the NYU and ISMMS institu-
tional review boards approved the inclusion of human
participants for this study. All participants provided
written informed consent.

Lumbar puncture, CSF collection and analysis

Procedures for the lumbar punctures (LP) performed at
NYU have been previously published [41, 42]. Briefly, all
LPs were performed in the morning to early afternoon
(average time of LP was 12:17 pm + 57 min, and average
duration between awakening time and LP was 5h and
27 + 54 min). The mean interval between the nocturnal
polysomnography (NPSG) and CSF collection was 4.9 +
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6.8 months. Concentrations of CSF total-tau (T-tau), tau
phosphorylated at threonine 181 (P-tau) and amyloid
beta 42 (AP4y) were measured using enzyme-linked im-
munosorbent assays (INNOTEST, Fujirebio, Belgium)
conducted at the Sahlgrenska University Hospital
(Sweden) blind to both clinical and sleep data.

In-lab nocturnal polysomnography (NPSG)

Sleep recordings were performed following American
Academy of Sleep Medicine (AASM) guidelines [43].
Briefly, NPSG consisted of six electroencephalographic
(EEG) channels (F3—-4, C3-4 and O1-2 referenced to
the contralateral mastoid), two electrooculographic
(EOG) leads, and one chin electromyographic (EMG)
channel. Visual scoring of sleep/wake stages into 30-s
epochs of wakefulness (W), NREM 1 sleep (N1), NREM
2 sleep (N2), NREM 3 sleep (N3), REM sleep (R) was
performed by a single scorer blind to CSF data [12].
Sleep quality measures including total sleep time (TST),
wake after sleep onset (WASO), sleep efficiency (SE),
arousals and respiratory events were scored using AASM
criteria [43]. AHI4% was defined as the sum of all ap-
neas and hypopneas with >4% desaturation divided by
TST in hours. AHI-all was defined as the sum of all ap-
neas and hypopneas with =3% desaturation or arousal
divided by TST in hours. Characteristics of the sleep
spindles were obtained from the EEG signals, acquired
with a sampling frequency of 256 Hz. Based on the opti-
mal identification of spindles [44—46], the C3-lead was
chosen for spindle detection. We used our published
DETOKS [44] method to decompose the EEG channel
into oscillatory and non-oscillatory or transient compo-
nents. Spindles with duration less than 0.5 and more
than 3s were discarded. Detected spindles were further
classified as either fast (13-16 Hz) or slow (11-13 Hz)
based on their power spectra, calculated using the fast
Fourier transform (FFT). Absolute SWA was calculated
using the average power density by FFT in the 0.5-4.0
Hz range at the F4 EEG lead [47].

Habitual sleep assessment

Wrist-based actigraph (Micro Motionlogger, AMI Inc.)
data was collected to measure at home objective mea-
sures of TST. Subjects wore the actigraph for seven con-
secutive days on the non-dominant hand and
maintained sleep logs to help confirm actigraphy
measures.

Statistical analyses

CSF and spindle properties were not normally distrib-
uted (Shapiro-Wilk test), therefore Spearman correla-
tions were performed for bivariate analysis. Although
correlations do not imply directionality, in order to bet-
ter understand how individual CSF AD biomarkers could
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be influencing spindle density, we performed linear re-
gression analyses where spindle density was the response
variable. To restore normality for regression analyses, a
square root transformation was applied to spindle dens-
ity in N2, spindle count in N2 and fast spindle density in
N2, while natural log transformations were applied to
WASO, AHI4%, AHI-all, arousal index and CSF vari-
ables. Box-Cox transformation was applied to spindle
duration and SE. Before conducting the regression ana-
lyses, we checked for inter-correlations between all the
above variables. A correlation matrix was computed on
transformed variables using Pearson’s correlations. Vari-
ables that inter-correlated with a value higher than 0.6
(i.e. P-tau and T-taw: r=0.929, p < 0.001; WASO and
SE: r=0.931, p< 0.001; AHI4% and AHI-all: r=0.709,
p <0.001; AHI-all and arousal index: r = 0.754, p < 0.001)
were not included in the same regression models. Three
predefined models of adjustment were used in which
spindle density in N2 was the response variable. Model 1
included age, sex and ApoE4 status as predictors. Model
2 added each CSF biomarker individually as a predictor
variable to age, sex, and ApoE4 status. Model 3 included
combinations of CSF biomarkers (i.e. CSF AP, and
T-tau or APy, and P-tau) along with age, sex, and ApoE4
status. After establishing T-tau as the strongest CSF pre-
dictor of spindle density, on a final analysis we assessed
the extent to which spindle density best predicted vari-
ance in CSF T-tau (Models 4 and 5) or the CSF T-tau/
APy, ratio (Models 6 and 7) among several alternative
sleep physiology variables by performing hierarchical re-
gression with CSF T-tau or the CSF T-tau/Af,, ratio as
the response variable. Models 4 and 6 included age, sex
and ApoE4 status as predictors. Models 5 and 7 added
individual sleep measures as predictors including N2
spindle density, frontal SWA, WASO, SE, AHI4%,
AHlI-all, in-lab TST, and habitual TST. All statistical
analyses were performed with SPSS version 23.0 (IBM
Corp., Armonk, NY). Statistical significance was set at
p <0.05 using two-tailed tests.

Results

Participant characteristics

A total of 50 subjects (54% female) with mean age 67.2
+7.3 (range 53-83) participated in this study. Table 1
lists demographic characteristics of this sample, includ-
ing ethnicity, common medical comorbidities, and mea-
sures of cognition, sleep, and levels of T-tau, P-tau, and
APy, in the CSE. All subjects had a Clinical Dementia
Rating (CDR) of 0, mean Mini-Mental State Examination
(MMSE) of 29.1 +1.1, 16.7 £ 2.1 years of education, and
were generally non-obese (BMI = 25.4 + 3.5). Thirty-four
percent (17 subjects) were ApoE4+. Overall, the cohort
consisted of cognitively normal elderly in good health
with 4 of 50 that were both amyloid-positive and tau



Kam et al. Molecular Neurodegeneration

Table 1 Participant characteristics

(2019) 14:10

Page 4 of 12

Table 1 Participant characteristics (Continued)

n=>50 n=>50
Age 67.2+73 N3 (% of TST) 176+ 108
Male 46% (23) REM (% of TST) 184+49
BMI 254+35 Habitual TST (hrs.) 72+10
Education 167+ 2.1 Results reported as mean + SD with the exception of CSF and AHI data which
are reported as median (interquartile range, IQR)
CDR 0 1. Biomarker profile determined using A4, cutoff < 500 pg/mL and P-tau;g;
MMSE 201+ 1.1 cutoff >52.9 pg/mL or T-tau cutoff > 323 pg/mL with percent of cohort and
C number of subjects per group (including number of E4 carriers and
Hypertension 30% (15) non-carriers) reported
. i o Abbreviations: CDR Clinical Dementia Rating, MMSE Mini Mental State
Cardiovascular disease 6% (3) Examination, CSF cerebral spinal fluid, ESS Epworth Sleepiness Scale, AHI4%
Diabetes 2% (1) Apnea Hypopnea Index with 4% Desaturation, AHl-all all Apneas Hypopneas
and Arousals Index, TST Total sleep time, WASO Wake after sleep onset, SE
Thyroid disorders 18% (9) Sleep efficiency, N1: Stage N1 sleep, N2: Stage N2 sleep, N3: Stage N3 sleep,
ApoEd+ 34% (17) REM: Rapid-eye movement sleep
Ethnicity positive (APsy <469.5pg/mL, T-tau >323 pg/mL or
Caucasian 84% (42) P-tau >52.8 pg/mL as positive cut-offs), 14 of 50 that
Afican American 14% (7) were amylo.ld-neg?pve and tau-pos1t‘1ve, 8 of 50 that
) were amyloid-positive and tau-negative, and 24 of 50
Asian 2% (1) . . .
1 that were both amyloid-negative and tau-negative (Table
CSF (pg/mL) 1). These cut-off values were calculated based on con-
AB4> median (IQR) 626.0 (339) struction of ROC curves for healthy and diseased sub-
P-tausg; median (IQR) 40.1 (21) jects (MCI and AD) using the NYU Center for Brain
T-tau, median (IQR) 2417 (192) Health biobank. Histograms of the distributions of CSF

Preclinical AD groups

Amyloid™/Tau™ 24 (48%), 3 (12.5%) ApoE4 carriers

Amyloid™/Tau™ 14 (28%), 6 (42.9%) ApoE4 carriers

Amyloid*/Tau™ 8 (16%), 4 (50%) ApoE4 carriers

Amyloid*/Tau™ 4 (8%), 4 (100%) ApoE4 carriers
Sleep

ESS 59+37

AHI4% (IQR) 12 (2.9)

AHl-all (IQR) 85(7.8)

Arousal Index 19.7+£76

O, Saturation 944+17

In-lab TST (hrs.) 60+10

Latency to sleep (min.) 1M1.7+127

Latency to REM (min.) 99.2+619

WASO (min.) 91.5+583

SE (%) 783+119

N1 (% of TST) 204 +83

N2 (% of TST) 436£108

Apyy, T-tau, and P-tau in this cohort are shown in Add-
itional file 1: Figure S1). In-lab TST was 6.03+ 1.05h
with WASO of 91.5+ 58.3 min and SE of 78.3+11.9%
(Table 1). This cohort did not suffer from subjective day-
time sleepiness as determined by the Epworth Sleepiness
Scale (ESS=59+3.7). In-lab sleep latency was 11.7
+ 12.7 min and latency to REM was 99.2 + 61.9 min. Me-
dian AHI4% was 1.2 (IQR 2.9/h, range 0.1/h to 10.8/h)
and median AHI-all was 8.5 (IQR 7.8/h, range 1.8/h to
29.3/h). No associations were observed between spindle
density and age, likely a consequence of the relatively re-
stricted age range of our sample. Similarly, although
women generally have higher spindle density than men
[21, 48], in this sample there were no significant differ-
ences in N2 spindle density across sex (males: 1.9 + 1.3
#/min N2 sleep, females: 2.2 + 1.5 #/min N2 sleep, p =
0.566).

Association between N2 spindle density, CSF tau proteins
and A4,

Pairwise unadjusted and conditional (on age, sex and
ApoE4 status) correlations between the CSF biomarkers
of AD and N2 sleep spindles density are presented in
Table 2. The unadjusted correlations are given below
the main diagonal while conditional correlations are
given above the main diagonal. There was a high inter--
correlation between CSF AD biomarkers, particularly be-
tween T-tau and P-tau (r=0.929, p <0.001). N2 spindle
density was negatively correlated with all CSF measures,
and despite the strong correlation between both CSF tau
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1
CSFT- 0201 | 9342 5069 | 0.086 08
au g
0.6
CSF P- 0191 | 94921 5035 | 0.048
tauqgq 0.4
0.355 | 0.294 | CSF | -0.312 | -0.323 o=
i "8 = - -0.161 | 0.239
ABs2
0
- 4 -0.2
0297 | 5216 | 0398 | swa | 0.187 | -0010 | 0.056
-0.4
04511 -0353 | 0.363 | 539 | N2 | 0109 | -0.100 06
Density
-0.8
0.048 | 0.088 | -0.157 | -0.182 | 0.039 | WASO P
0019 | -0062 | 0234 | 0190 | -0.050 SE

Partial Pearson correlations controlling for age, sex, and ApoE4 genotype presented above the diagonal, unadjusted Pearson correlations presented below the
diagonal. Significant correlations are color coded with shade indicated by r value. *= p <0.05, ** = p <0.01, ***= p <0.001.

measures, spindle density was more strongly associated
with T-tau than with P-tau. The pairwise correlation coef-
ficients adjusted for age, sex and ApoE4 status, given
above the main diagonal, show a similar pattern and indi-
cate that the conditional associations were even stronger
than the unadjusted ones. In addition to individual CSF
protein levels, the ratios between T-tau/Af4, and P-tau/
APy, have been used as AD biomarkers. Spindle density
during N2 sleep was also found to be negatively correlated
with the ratio of T-tau/AB,, (r=-0.380, p =0.010) and
P-tau/APys (r=-10.31, p = 0.043).

To evaluate the relative strength of the association
of each of the CSF biomarkers with N2 spindle
density, we conducted hierarchical regression ana-
lysis with N2 spindle density as the response and
each of the CSF biomarkers as the predictors. The
results are given in Table 3. The model with only
the age, sex, and ApoE4 genotype and no CSF pre-
dictors explained 12.8% of the variance in spindle
density (Model 1). In the presence of the covariates,
each of the CSF biomarkers was a significant pre-
dictor, and adding each of the variables improved
the predictive power: APy, by 8.8%, P-tau by 18.1%,
T-tau by 25.9%, and the T-tau/AP4, ratio by 12.9%
(see AR? in Table 3), confirming the results discussed
above. Finally, inclusion of pairs of CSF biomarkers to-
gether (Model 3) showed that in the presence of T-tau or
P-tau, APy, did not remain a significant predictor of N2
spindle density, while T-tau and P-tau remained signifi-
cant predictors in the presence of APy, albeit with T-tau

having greater predictive value. There was a dramatic de-
crease in magnitude of the coefficients for AP, from
Model 2, where it is the single CSF measure, to Model 3,
where it is together with T-tau (Table 3), while the T-Tau
coefficients remained unchanged or increased in strength
in the presence of ABy,. This suggests the principle im-
portance of T-tau among the three CSF biomarkers in
their association with N2 spindle density.

CSF measures of tau do not correlate with measures of
sleep quality or habitual sleep duration

In order to ascertain that the influence of tau is specific
to spindles, we investigated potential relationships be-
tween T-tau and P-tau and sleep quality variables mea-
sured with PSG, including sleep efficiency, WASO,
AHI4% and AHI-all, as well as variables measured with
actigraphy, including habitual sleep duration (TST). We
did not observe any correlations between T-tau or P-tau
and any of these measures at baseline (Additional file 1:
Figure S2).

To further confirm the specificity of sleep spindles in
predicting CSF T-tau, we conducted hierarchical regres-
sion analysis with CSF T-tau as the response variable
with several sleep measures as predictors (Table 4). The
baseline model with age, sex, and ApoE4 genotype alone
without sleep predictors explained 7.7% of the variance
in CSF T-tau (Model 4, Table 4). Next, we added sleep
predictors individually to assess whether or not they im-
proved the predictive power of CSF T-tau (Model 5,
Table 4). Of the sleep predictors selected, N2 spindle
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Table 3 Hierarchical linear regression examining spindle density as a function of CSF proteins

Model @ Predictors B 95% Cl pd R? AR’
Model 1: age, sex and ApoE4 status only Age —0.251 —0.033, 0.002 0.081 0.128 NA
Sex 0.032 —0.234, 0.294 0.819
APOE €4 0232 —0.045, 0.500 0.100
Models 2 °: age, sex and ApoE4 status plus one CSF biomarker ABa4> -0.312 —-0.79, — 0.043 0.030 0216 0.088*
P-tauyg; —0.456 -0907,-0236  0.001 0308  0.181%
T-tau -0.539 —-0.783, - 0.288 < 0.001 038  0.259*%
T-tau/ABg; ratio -0415 -4.504, - 0.735 0.008 0.257 0.129*
Models 3 < age, sex and ApoE4 status plus two CSF biomarkers T-tau —0.503 —0.784, - 0.216 0.001 0.390 0.004
+ ABa2 -0.075 —-0479,0.279 0598
ABs -0.152 —-0.589, 0.182 0.294 0325 —-0.076*
+ P-tauyg; —-0.391 —0.859, —0.121 0.010

a. dependent variable: N2 spindle density

b. change from model with covariates age, sex and ApoE4

c. change from model with covariates age, sex, ApoE4 and CSF T-tau
d. significance level for each predictor

* denotes significant change in R? from comparator model (p < 0.05)

density significantly improved the predictive power of
the model for CSF T-tau by 28.4% above age, sex, and
ApoE4 genotype (AR* = 0.284, p = 0.001, Model 5, Table
4), and it was the only sleep variable to do so. The
addition of comorbidities including presence of hyper-
tension, cardiovascular disease, diabetes and thyroid dis-
orders did not influence the relationship between N2
density and CSF T-tau (Additional file 2: Table S2).
There were also no significant correlations between N2
spindle density and any of the other sleep variables ex-
amined in this cohort.

In a related model, we conducted hierarchical regres-
sion analysis with the CSF T-tau/Af4, ratio as the re-
sponse variable with several sleep measures as

predictors. ApoE4 was such a significant predictor of
CSF AP, that the combination of age, sex, and ApoE4
genotype explained 31% of the variance in the CSF
T-tau/AB4, ratio. (Additional file 3: Table S1, Model 6).
In this analysis, there is no sleep variable that signifi-
cantly explained additional variance in CSF T-tau/APg4,
ratio beyond age, sex, and ApoE4 genotype, although N2
spindle density comes closest (AR*=0.07, p =0.072
(Additional file 3: Table S1, Model 7).

CSF tau associates with several spindle biophysical
properties, but not with SWA

We observed that CSF T-tau was significantly associated
with spindle density, count, duration, and fast spindle

Table 4 Hierarchical linear regression examining CSF T-tau as a function of sleep measures

Model ° Predictors B 95% Cl pc R AR?

Model 4: age, sex and ApoE4 status only Age 0.065 —-0.016, 0.024 0.713 0.077 NA
Sex —0.01 —-0310, 0.297 0.966
ApoE4 0.262 —0.074, 0.532 0.134

Models 5 °: age, sex and ApoE4 status plus one sleep variable N2 spindle density -0.573 -0.772, - 0.224 0.001 0.361 0.284*
SWA —0.265 —0.494, 0.099 0.184 0.129 0.052
WASO —0.247 —0.408, 0.085 0.191 0.127 0.050
SE 0310 -0.110, 1672 0.084 0.163 0.086
AHI4% -0.248 —0.185, 0.029 0.149 0.138 0.061
AHI-all -0.278 —0.404, 0.057 0.135 0.142 0.065
TST in-lab 0.171 -0.082, 0.229 0.345 0.103 0.027
TST actigraphy -0.063 —-0.178, 0.129 0.749 0.080 0.003

a. dependent variable: CSF T-tau

b. change from model which only includes covariates age, sex, and ApoE4
c. significance level for each predictor

* denotes significant change in R? from comparator model (p < 0.05)
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density (Fig. 1) after controlling for age, sex, and ApoE4
genotype. CSF T-tau was not associated with slow spin-
dle density, spindle power, or mean peak frequency. Fast
spindles can be functionally differentiated from slow
spindles by their greater tendency to nest within oscilla-
tions and promote memory processing [49]. In linear re-
gression models where CSF T-tau, age, sex, and ApoE4
genotype where held constant as predictor variables, we
observed that CSF T-tau explained 25% of the variance
in N2 spindle count (F (4, 49)=3.77, p = 0.010), 45% of the
variance in spindle duration (Fy, 49)=9.23, p <0.001),
and 41% of the variance in fast spindle density
(F4, 49)=7.90, p <0.001) (Additional file 4: Table S3).

The cohort examined in this study contains signifi-
cant overlap with subjects in which we found associa-
tions between measures of SWS and CSF APy, (39/50
subjects) [12]. Consistent with our prior observations,
CSF A4y was inversely correlated with frontal SWA
(r=-0312, p =0.039 after correcting for age, sex,
and ApoE4, Table 2). In contrast, while we observed
an unadjusted correlation between frontal SWA and
T-tau, frontal SWA was not correlated with either
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T-tau or P-tau (r=-0.291, p =0.055 and r=-0.191,
p =0.215, Table 2) when correcting for age, sex, and
ApoE4.

N2 spindle density is associated with neurocognitive
measures

Both levels of tau in the brain and sleep spindle density
have been associated with measures of cognition. In par-
ticular, sleep spindle density has shown to be correlated
with the Bells Test, Connors Continuous Performance
test, and Auditory Verbal Learning Test when completed
the morning following sleep testing [50]. In the current
study, neuropsychological testing was completed prior to
the sleep study with variable duration between the ad-
ministration of the tests and the in-lab sleep measure-
ments. Across all subjects, we observed significant
bivariate correlations between raw performance values
on the digit symbol substitution test and fast spindle
density, between Trails A raw performance values and
both total and fast spindle density, and between Trails B
raw performance values and slow spindle density. When
scores on these tests were z-scored and normalized for
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age, sex, race, and years of education [40], we continued
to observe significant correlations between Trails A per-
formance and both total and fast spindle density, and
between Trails B performance and slow spindle density
(Additional file 5: Table S4). In all cases, higher spindle
density was associated with better performance, except
for slow spindle density, where greater slow spindle
density was associated with longer times on Trails B.

Discussion
Growing evidence suggests that disruptions in the
sleep-wake cycle may increase AD risk prior to clinical
symptoms. While attenuated SWS has been shown to be
associated with elevated CSF AB [12, 13] as well as in-
creased PET amyloid uptake [51], other changes in sleep
oscillations have not been well characterized with re-
spect to other AD biomarkers. In this study, we investi-
gated the relationship between sleep spindles and CSF
T-tau, P-tau and APy, in a population of older cogni-
tively normal adults. Spindle density in N2 sleep was sig-
nificantly correlated with CSF T-tau, P-tau and A
both unadjusted and after adjustment for age, sex, and
ApoE4. Nonetheless, because of the inter-correlations
between CSF T-tau, P-tau and APg,, we posit that the
association between APy, and spindle density might be
largely driven by the primary association of CSF tau with
spindle density. This was supported by the loss of signifi-
cant associations between CSF A4, and spindle density
when CSF T-tau or P-tau was included as a covariate.
We interpret the association of low spindle density
with elevated CSF T-tau and P-tau as representative of
increased AD risk. It is less clear that the association of
low spindle density with elevated CSF Ay, is also re-
flective of increased AD risk, given that CSF Ay, is
lower in bonafide AD dementia subjects when compared
to age matched controls [52]. That said, how CSF AP,
changes over time, particularly in cognitively normal in-
dividuals who may be remote from developing symp-
toms remains a matter of some debate. For example,
individuals with dominantly inherited AD have higher
concentrations of CSF APy, on average than controls 20
or more years from estimated symptom onset that then
decline more rapidly [53, 54]. Additionally, recent data
from the NYU, ADNI and NACC cohorts suggests an
early preclinical stage, marked by CSF elevations in tau
accompanied by elevations in CSF APy, which were
largely observed in younger age quartiles (between 45
and 70vyears of age), indicating that elevated CSF AP,
might also be associated with very early preclinical AD
risk [55]. When viewing CSF A4, in isolation, we can-
not rule out the possibility that low spindle density being
associated with elevated AP, might be protective. How-
ever, it is worth highlighting that spindle density was
also significantly inversely correlated with CSF T-tau/
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A4y and P-tau/AB,, which is meaningful because these
CSF ratios have predicted decline from normal cognition
in cognitively normal older adults over a 1-8year
follow-up period [56].

In addition to total spindle density, we also found evi-
dence that spindle duration and fast spindle density dur-
ing N2 sleep are significantly associated with CSF T-tau.
Of note, a decrement in total spindle density and fast
spindle density has also been observed in AD patients,
who presumably have high brain tau load [57]. When
evaluating other properties of sleep, we confirmed our
prior observation that frontal SWA is associated with
CSF AP4o, however, SWA, SE, WASO and number of
arousals during sleep were not correlated with CSF tau
proteins in this sample.

This seeming specificity of CSF T-tau for spindles
stands in potential contrast to recent findings suggesting
that measures of subjective sleep quality by question-
naire were negatively correlated with both CSF T-tau/
AP4> and P-tau/Ay, ratios [58]. This may be explained
by differences in the use of subjective versus objective
measures of sleep used in this study. Several other obser-
vations suggest that sleep disruptions from a variety of
sources including insomnia [59], OSA [60-62] and
arousals measured with actigraphy [18] increase risk for
cognitive decline and development of AD. Our current
results support further longitudinal investigation into
whether spindle density is a sleep variable that also in-
creases AD risk. Of note, spindle density did not correlate
with general measures of sleep quality in these older sub-
jects without documented sleep disorders, highlighting
the utility of multidimensional and oscillation-specific
analysis of sleep physiology such as the one used in this
study.

While any correlation can represent an epiphenom-
enon, the observed associations between sleep spindles
and CSF T-tau warrant thinking about possible mechan-
istic underpinnings that link the two. One possibility to
consider is that accumulating tau negatively impacts the
generation of spindles. Spindles are thought to largely
evolve from a thalamo-cortical feedback loop involving
thalamic reticular neuron inhibition of thalamic relay
neurons. Tau is not thought to accumulate in thalamic
reticular neurons, but tau in cortical neurons could
affect this circuit. Tau in brainstem neurons projecting
to thalamic reticular neurons could be involved [63-65],
but would be expected to have more diffuse effects on
sleep. In any such cases, reduced spindle density could
serve as a biomarker of this pathological process [65].

The converse possibility is that sleep spindles reduce
the production or increase the metabolism of tau. Ani-
mal studies have shown that neuronal activity can pro-
mote tau production [66, 67], however, spindles are an
organized network pattern, and do not represent a
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simple decrease in overall network activity [19]. Add-
itionally, sleep in general has been associated with im-
mune function [68] and an increase in interstitial space
in the brain [69], both of which constitute plausible
mechanisms contributing toward reducing extracellular
soluble tau in the brain. To date however, a specific role
for sleep spindles in these processes has not been identi-
fied. Irrespective of a full understanding of the mechan-
ism, the ability to manipulate sleep spindles with drugs
[70] or with greater temporal precision using oscillating
acoustic or other stimuli [71] establishes intriguing op-
portunities to test a causal role for sleep spindles in tau
aggregation in human subjects.

Finally, spindle density and CSF tau levels could be asso-
ciated by being common downstream consequences of an
upstream process. For example, tau is released in response
to axonal injuries (often from traumatic brain injury) at
the time of injury and before frank evidence of neurode-
generation is present. Because we observed associations of
sleep spindles with both CSF T-tau and P-tau, we cannot
completely infer whether any association is more strongly
tied to axonal injury versus formation of neurofibrillary
tangles. In subjects with moderate to severe diffuse axonal
injury, sleep spindle amplitude and peak frequency were
significantly reduced acutely with subsequent return to
baseline levels commensurate with functional improve-
ment over 1year [72]. Tauopathy is also observed in
other neurodegenerative disorders including frontotem-
poral dementia, progressive supranuclear palsy (PSP),
primary age related tauopathy and chronic traumatic
encephalopathy. If there is a common upstream process
that generally promotes tauopathy, reduced spindle
density could be a corresponding consequence. In a
study that included analysis of sleep spindles in subjects
with PSP, spindle density was markedly reduced [73],
supporting this idea.

Limitations of this work include the fact that the
NPSG can itself alter sleep quality [74] in ways that vary
between subjects. However, it should be noted that all
subjects completed home monitoring for OSA screening
prior to the in-lab NPSG that constituted the source of
sleep data. Also, while we strived to perform LPs at a
consistent time of day, the time interval between the LP
and NPSG was variable and could constitute a source of
variance. However, there is low intra-individual vari-
ability over 6 months to 2 years in CSF levels of T-tau,
P-tau and APy, [75]. Finally, it bears noting that when
using a preclinical AD classification [76], our cohort
contains a distribution of putative AD pathology, ran-
ging from 48% without evidence for either CSF APy, or
tau to 8% that have presence of both CSF A4, and tau
above biomarker cutoffs. Therefore caution is war-
ranted in interpreting the prognostic value of sleep
spindle density, and studies tracking how sleep spindles
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change longitudinally along the progression of AD
should be insightful.

Conclusions

In conclusion, we report that spindles during N2 sleep
are negatively correlated with CSF T-tau levels and to a
lesser degree to CSF P-tau and CSF Af4,. Further, sleep
quality measures were not correlated with these CSF
measures. These results indicate that poor sleep quality
alone does not reduce spindle occurrence and is unlikely
to be an explanatory factor in the observed associations
between spindle density and levels of CSF tau. While re-
ductions in NREM sleep oscillations, including SWS and
spindles, may reflect a preclinical AD state, it remains
unclear just how these attenuated oscillations are
mechanistically linked to the cellular processes regulat-
ing AP and tau. Candidate mechanisms would include
patterned activity-driven synthesis or degradation of
such molecules or the coupling of such oscillations to
neuro-immune function. Longitudinal and interven-
tional studies to assess changes in sleep oscillations as
well as AD biomarkers are needed.
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