
RESEARCH ARTICLE Open Access

Integrated analysis of the aging brain
transcriptome and proteome in tauopathy
Carl Grant Mangleburg1,2†, Timothy Wu1,2†, Hari K. Yalamanchili1†, Caiwei Guo3, Yi-Chen Hsieh1, Duc M. Duong4,
Eric B. Dammer4, Philip L. De Jager5,6, Nicholas T. Seyfried4,7, Zhandong Liu8,9 and Joshua M. Shulman1,3,9,10*

Abstract

Background: Tau neurofibrillary tangle pathology characterizes Alzheimer’s disease and other neurodegenerative
tauopathies. Brain gene expression profiles can reveal mechanisms; however, few studies have systematically
examined both the transcriptome and proteome or differentiated Tau- versus age-dependent changes.

Methods: Paired, longitudinal RNA-sequencing and mass-spectrometry were performed in a Drosophila model of
tauopathy, based on pan-neuronal expression of human wildtype Tau (TauWT) or a mutant form causing
frontotemporal dementia (TauR406W). Tau-induced, differentially expressed transcripts and proteins were examined
cross-sectionally or using linear regression and adjusting for age. Hierarchical clustering was performed to highlight
network perturbations, and we examined overlaps with human brain gene expression profiles in tauopathy.

Results: TauWT induced 1514 and 213 differentially expressed transcripts and proteins, respectively. TauR406W had a
substantially greater impact, causing changes in 5494 transcripts and 697 proteins. There was a ~ 70% overlap
between age- and Tau-induced changes and our analyses reveal pervasive bi-directional interactions. Strikingly, 42%
of Tau-induced transcripts were discordant in the proteome, showing opposite direction of change. Tau-responsive
gene expression networks strongly implicate innate immune activation. Cross-species analyses pinpoint human
brain gene perturbations specifically triggered by Tau pathology and/or aging, and further differentiate between
disease amplifying and protective changes.

Conclusions: Our results comprise a powerful, cross-species functional genomics resource for tauopathy, revealing
Tau-mediated disruption of gene expression, including dynamic, age-dependent interactions between the brain
transcriptome and proteome.
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Background
The Microtubule Associated Protein Tau (MAPT/Tau) ag-
gregates to form neurofibrillary tangle pathology in Alzhei-
mer’s disease (AD) and other neurodegenerative tauopathies

characterized by progressive cognitive and/or motor disabil-
ity, including progressive supranuclear palsy (PSP), cortico-
basal degeneration, chronic traumatic encephalopathy, and
certain forms of frontotemporal dementia (FTD) [1, 2]. Rare
mutations in the MAPT gene cause familial FTD, which is
also characterized by prominent neurofibrillary tangle de-
position [3–5]. Based on this genetic evidence, along with
results from cellular and animal models [6, 7], Tau is a crit-
ical mediator of age-related neurodegeneration and a causal
link among this diverse group of neurologic disorders. While
the precise mechanisms of Tau-induced neuronal injury
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remain incompletely defined, progressive synaptic dysfunc-
tion and neuronal loss likely arises from a cascade of cellular
derangements, including oxidative- and immune-mediated
injury, altered proteostasis, and aberrant transcription and
translation [6, 8].
RNA-sequencing (RNA-seq) makes possible compre-

hensive gene expression profiling of postmortem human
brain tissue in AD and other tauopathies, providing a
systems-level view of transcriptome perturbations ac-
companying neurodegeneration [9–12]. However, inter-
pretation of differential gene expression analysis is
hindered by a number of potential limitations. One
major challenge arises from the recognition that the
pathologic cascade in AD and related disorders initiates
decades prior to onset of clinical manifestations [13, 14],
whereas human brain expression profiles can only be
generated cross-sectionally at the time of death. Indeed,
it is essential to reconstruct the longitudinal, aging-
dependent time-course of molecular derangements in
order to pinpoint the earliest opportunities for interven-
tion and to develop more effective biomarkers. Second,
most brains from older persons with dementia show
mixed pathologies at autopsy [15]. Therefore, it can be
difficult to differentiate Tau-induced specific expression
changes from those caused by other lesions (e.g. amyloid
plaques, infarcts, etc.) or brain aging more generally.
Third, among associated gene expression changes, it is
important to identify those perturbations that are truly
primary and therefore causal, rather than simply a con-
sequence of disease. Lastly, emerging evidence suggests
that transcription and translation are frequently discord-
ant [16], making it important to consider both mRNA
and protein changes to resolve many disease-associated
expression signatures. While recent advances in mass-
spectrometry permit deep surveys of protein expression,
few studies have systematically profiled both the brain
transcriptome and proteome in AD and related tauopa-
thies [17, 18].
By contrast with studies of human postmortem tissue,

transgenic animal models of tauopathy readily permit
controlled experimental manipulations to (i) define age-
dependent changes, (ii) isolate the specific impact of
Tau, and (iii) definitively establish causation. For ex-
ample, RNA-seq in mouse transgenic models of tauopa-
thy have highlighted early upregulation of inflammatory
processes and downregulation of synaptic function genes
preceding behavioral phenotypes, and suggest Tau-
specific impact on microglial and neuronal function
[19–21]. Expression of human MAPT in the nervous sys-
tem of the fruit fly, Drosophila melanogaster, recapitu-
lates many key features of tauopathies, including
misfolded/hyperphosphorylated Tau, age-dependent syn-
aptic dysfunction and neuronal loss, and reduced sur-
vival [6, 22]. Importantly, Drosophila permits high-

throughput genetic manipulation, and these models have
been successfully deployed for enhancer-suppressor
screens [23–25]. The results highlight many promising
modifiers of Tau-mediated neurodegeneration, including
genes that overlap with human AD susceptibility loci
[26–28]. Prior gene expression studies in fly tauopathy
models have been limited by incomplete coverage [29]
or cross-sectional design [30], and none have coupled
analyses of both transcripts and proteins. We have ana-
lyzed longitudinal, paired transcriptome and proteomes
from control flies and following pan-neuronal expression
of either wildtype or mutant forms of human Tau. We
identify Tau-induced patterns of differential expression
that are robust to adjustment for aging, and we integrate
our results with complementary expression profiles from
human brains affected by tauopathy and known genetic
modifiers of Tau neurotoxicity.

Methods
Drosophila stocks and husbandry
UAS-TauWT and UAS-TauR406W transgenic flies, as
previously described in Wittmann et al. 2001, were
crossed with the pan-neuronal expression driver
elav-GAL4 to generate experimental animals with the
genotype elav-GAL4/+;UAS-TauWT/+ or elav-GAL4/
Y;UAS-TauWT/+ (elav > TauWT) and elav-GAL4/+;
UAS-TauR406W/+ or elav-GAL4/Y;UAS-TauR406W/+
(elav > TauR406W), respectively. These flies express
the human Tau 0N4R isoform (383 amino acids).
For control animals, we used the genotypes: elav-
GAL4/+ and elav-GAL4/Y. All flies were raised on
standard molasses-based Drosophila media at 25 °C
with ambient light conditions, and aged to 1-, 10-,
or 20-days following eclosion. We confirmed expres-
sion of Tau at similar levels in elav > TauWT and
elav > TauR406W flies using western blot analysis, as
previously described [31] using the following anti-
bodies: rabbit anti-Tau (1:5000, Dako); rabbit anti-
GAPDH (1:5000, GeneTex) and HRP-conjugated
anti-rabbit (1:10000, Santa Cruz).

Drosophila RNA-sequencing data
The Drosophila RNA-sequencing (RNA-seq) dataset an-
alyzed for this work was generated as part of another
study, where it is described in detail [31]. Briefly, for
elav > Tau and elav controls, animals were evaluated at
1-, 10-, or 20-days. To avoid possible batch effects, ex-
perimental and control genotypes used for each com-
parison (TauWT and TauR406W) were sequenced
together, such that 2 separate control datasets were gen-
erated (control 1 and control 2, respectively) for the
TauWT and TauR406W RNA-seq analyses. Triplicate sam-
ples (n = 3) were used for all genotypes and time points,
except for the elav control genotype used for the
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comparison with TauR406W(control 2), for which dupli-
cate samples were used (n = 2):

Exp Replicates (n) Ctrl Replicates (n) Age (d)

TauWT 3 elav 3 1, 10, 20

TauR406W 3 elav 2 1,10, 20

Thus, the transcriptome study included a total of 33
samples. Total RNA was extracted from approximately
100 adult fly heads (for each genotype/age/sample),
equally divided between males and females. Sequencing
was performed on the Illumina HiSeq with 100 bp paired-
end reads. Gene expression values from each sample were
quantified as the number of reads mapped (to a specific
gene) by setting --quantMode to GeneCounts in STAR
2.5.3a [32]. Genes with an average read count < 50 across
all samples in the comparison were excluded, resulting in
count data on 17,104 transcripts across all samples in the
final dataset. Unsupervised clustering of samples was
assessed by UMAP using DESeq2 depth normalized read
counts as described in [33].

Protein extraction and mass-spectrometry
For proteomics, the identical genotypes (elav > TauWT,
elav > TauR406W, and elav), time points (1-, 10-, or 20-
days), and conditions were evaluated as for the RNA-seq
analyses. Triplicate samples (n = 3) were used for all ge-
notypes and timepoints, and a single control series (con-
trol 3) was used since all samples were processed
together (27 total samples). Drosophila proteomics were
performed according to previously published protocols
[18]. Each replicate (40 fly heads of 1:1 male/female ratio
per sample) was homogenized in 500 uL of urea lysis
buffer (8M urea, 100 mM NaHPO4, pH 8.5), including
5 μL (100x stock) HALT protease and phosphatase in-
hibitor cocktail (Pierce). Protein supernatants were
transferred to 1.5 mL Eppendorf tubes and sonicated
(Sonic Dismembrator, Fisher Scientific) 3 times for 5 s
with 15 s intervals of rest at 30% amplitude to disrupt
nucleic acids and subsequently vortexed. Protein con-
centration was determined by the bicinchoninic acid
(BCA) method, and samples were frozen in aliquots at −
80 °C. Each brain homogenate was analyzed by SDS-
PAGE to assess for protein integrity. Protein homoge-
nates (150 μg) were diluted with 50mM NH4HCO3 to a
final concentration of less than 2M urea and then
treated with 1 mM dithiothreitol (DTT) at 25 °C for 30
min, followed by 5 mM iodoacetimide (IAA) at 25 °C for
30 min in the dark. Protein was digested with 1:100 (w/
w) lysyl endopeptidase (Wako) at 25 °C for 2 h and fur-
ther digested overnight with 1:50 (w/w) trypsin (Pro-
mega) at 25 °C. Resulting peptides were desalted with a
Sep-Pak C18 column (Waters), dried under vacuum, and

2 μg was resuspended in peptide loading buffer (0.1%
formic acid, 0.03% trifluoroacetic acid, 1% acetonitrile).
Peptide mixtures were separated on a self-packed C18
(1.9 μm Dr. Maisch, Germany) fused silica column (25
cm × 75 μM internal diameter (ID); New Objective, Wo-
burn, MA) by a NanoAcquity UHPLC (Waters, Milford,
FA) and monitored on a Q-Exactive Plus mass spec-
trometer (ThermoFisher Scientific, San Jose, CA). Elu-
tion was performed over a 120-min gradient at a rate of
400 nL/min with buffer B ranging from 3 to 80% (buffer
A: 0.1% formic acid and 5% DMSO in water, buffer B:
0.1% formic and 5% DMSO in acetonitrile). The mass
spectrometer cycle was programmed to collect one full
MS scan followed by 10 data dependent MS/MS scans.
The MS scans (300–1800 m/z range,1,000,000 AGC,
150 ms maximum ion time) were collected at a reso-
lution of 70,000 at m/z 200 in profile mode and the MS/
MS spectra (2 m/z isolation width, 25% collision energy,
100,000 AGC target, 50 ms maximum ion time) were ac-
quired at a resolution of 17,500 at m/z 200. Dynamic ex-
clusion was set to exclude previous sequenced precursor
ions for 30 s within a 10 ppm window. Precursor ions
with + 1, and + 6 or higher charge states were excluded
from sequencing.
Raw data for all samples was analyzed using

MaxQuant v1.5.2.8 with Thermo Foundation 2.0 for file
reading capability. The search engine Andromeda,
integrated into MaxQuant, was used to build and search
a Uniprot fly database consisting of 13,704 target
sequences, plus 245 contaminant proteins from the
common repository of adventitious proteins (cRAP)
built into MaxQuant. Methionine oxidation (+ 15.9949
Da), asparagine and glutamine deamidation (+ 0.9840
Da), and protein N-terminal acetylation (+ 42.0106 Da)
were variable modifications (up to 5 allowed per pep-
tide); cysteine was assigned a fixed carbamidomethyl
modification (+ 57.0215 Da). Only fully tryptic peptides
were considered with up to 2 miscleavages in the data-
base search. A precursor mass tolerance of ±20 ppm was
applied prior to mass accuracy calibration and ± 4.5 ppm
after internal MaxQuant calibration. Other search set-
tings included a maximum peptide mass of 6000 Da, a
minimum peptide length of 6 residues, 0.05 Da tolerance
for high resolution MS/MS scans. Co-fragmented pep-
tide search was enabled to deconvolute multiplex spec-
tra. The false discovery rate (FDR) for peptide spectral
matches, proteins, and site decoy fraction were all set to
1%. Quantification settings were as follows: re-quantify
with a second peak finding attempt after protein identifi-
cation has completed; match MS1 peaks between runs; a
0.7 min retention time match window was used after an
alignment function was found with a 20-min RT search
space. The quantitation method only considered razor
plus unique peptides for protein level quantitation.
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Quantitation of proteins was performed using LFQ (label-
free quantification) intensities given by MaxQuant. The
match-between-run (MBR) method was applied as part of
the MaxQuant pipeline [34]. Overall, only 18% (12,100 of
65,589) of all measured LFQs were derived from MBR.
Among the final dataset of 2843 proteins, MBR identifica-
tion was applicable, on average, in 4 out of 27 total sam-
ples total. The full list of parameters used for MaxQuant
are available as parameters.txt accompanying the public
release (see Availability of Data and Materials).
A total of n = 3584 unique proteins were initially

identified by label-free LC-MS/MS across our proteomic
dataset, and we additionally required that each protein
have complete, non-missing values among triplicate
samples in at least 1 experimental group, resulting in a
filtered dataset of n = 2843 protein isoforms. After col-
lapsing and averaging protein values with multiple iso-
forms, our final dataset included n = 2723 unique
proteins. Among the 27 samples included in our prote-
omic survey, we detected a mean of 2267 unique pro-
teins per sample (range = 1214–2547) (Additional file 2:
Table S1). Among TauWT and controls (18 samples),
1479 proteins were consistently detected. Among
TauR406W and controls (18 samples, same controls as for
TauWT), there were 1007 proteins consistently detected.
985 proteins were consistently detected across all 27
samples. For the 351 possible pairwise combinations
among samples, there was a mean sample-to-sample
overlap of 2015 proteins. Missing proteomic LFQ values
were imputed on a per sample basis as previously de-
scribed in [35]. Missing values were imputed by drawing
from a Gaussian distribution simulating expression near
the LFQ detection limit, a down-shift of 1.8 standard de-
viations from the median sample expression. For quality
assurance, we tabulated for each protein the number of
replicate samples with complete data (non-imputed),
broken down by genotype and age (Additional file 2:
Table S11). Abundance data for UniProt peptide IDs
that did not map to a fly gene symbol were excluded
from analysis. Unsupervised clustering of samples with
UMAP was performed using DEseq2 depth normalized
LFQ values (Additional file 1: Figure S6).

Analysis of differentially expressed transcripts and
proteins
Differential-expression analysis of transcripts and
proteins was performed using DESeq2 [36]. As detailed
above, for transcriptome analyses, elav > TauWT or
elav > TauR406W were compared with the batch-matched
elav control data (control set 1 or 2, respectively). For
proteomic analyses, the single elav control set (control
3) was compared to either elav > TauWT or elav >
TauR406W, and absolute peptide counts (LFQ) were used
as the input for DESeq2 (which only accepts integers).

Raw transcript or peptide counts were normalized for li-
brary depth using DESeq2 median of ratios, and tested
for differential expression using a generalized linear
model. We initially determined Tau-induced differen-
tially expressed transcripts or proteins cross-sectionally,
examining Tau and control data separately at each time
point (expression ~ genotype, stratified by age for either
1-, 10-, or 20-day old animals). Subsequently, we per-
formed joint regression analyses incorporating all longi-
tudinal data, and including a covariate for age
(expression ~ genotype + age); the genotype term coeffi-
cient was used for significance testing. Age was used as
a categorical, factor trait in our regression analyses to
account for the possibility of non-linearity. Genes and
proteins in Fig. 2 and Additional file 1: Figure S8 were
plotted using log-transformed and depth-normalized ex-
pression or LFQ values. For determination of age-related
changes in transcripts or proteins, our data was stratified
by genotype, evaluating elav controls or elav > Tau flies
separately, and age was used as the predictor variable.
Differential expression was computed for either (i.) day
1 vs. day 10, (ii.) day 10 vs. day 20, or (iii.) day 1 vs. day
20. Significance testing was performed using the Wald
test, implemented within DESeq2. In order to account
for multiple-comparisons, the Benjamini-Hochberg pro-
cedure was applied, and a false discovery rate (FDR) <
0.05 was considered significant. In order to further
evaluate the stringency of this FDR threshold, we applied
a permutation procedure [37], in which genotype labels
were shuffled within each experimental comparison and
differential expression analysis was performed using
DESeq2. Following 1000 permutations, we estimate an
empirically-derived FDR corresponding to the p-value
threshold selected from the experimental data (using the
Benjamini-Hochberg procedure). For the proteomic
studies of TauR406W and TauWT, this resulted in an em-
piric FDR estimate of 0.009 and 0.046, respectively. For
the transcriptome comparisons, the FDR estimates were
0.016 and 0.010, respectively. As a sensitivity analysis to
assess the potential impact of missing data and imput-
ation on our proteomic analyses, we additionally exam-
ined age-adjusted differential protein expression in
elav > TauR406W flies versus elav controls using 2 alter-
nate datasets: (i) restricted to 1013 proteins with no
missing values across all 27 samples or (ii) restricted to
2542 proteins with < 50% missingness. Full results from
these analyses are included in Additional file 2: Table
S12. All specific protein examples cited throughout the
manuscript had complete, non-missing values in at least
2 out of 3 samples within each experimental group.
For analysis of concordance between transcriptome

and proteome, we first examined the sign (positive or
negative) of the genotype coefficient from the
longitudinal (joint) regression model. Concordant
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transcripts were defined as having consistent direction of
change (e.g. either positive or negative fold-change). We
additionally implemented the survival R package [38],
which calculates a concordance estimate using Somers’
delta (D) in the formula (D + 1)/2. Regression models were
computed using the formula Transcript fold-change ~
protein fold-change, considering (i) 1309 genes that were
significantly differentially expressed in the transcriptome
in response to TauR406W or (ii) the subset of 261 genes for
which both transcripts and proteins were differentially
expressed. In this analysis, concordance estimates range
from 0 (perfectly anti-correlated) to 1 (perfectly corre-
lated), with 0.5 equating to random chance.
Functional enrichment for differentially expressed

transcripts or proteins (joint regression model) was
evaluated using the over-representation analysis (ORA)
function of the WEB-based GEne SeT AnaLysis Toolkit
[39]. All ORA analyses were conducted using the R im-
plementation of WEBGESTALT. The minimum number
of genes per category was set to 5. We employed the fol-
lowing databases: GO biological processes, GO molecu-
lar functions, GO cellular component, KEGG, and
Panther. Enrichment significance was defined using Fish-
er’s exact test, followed by the Benjamini-Hochberg pro-
cedure; significance was set at FDR < 0.05.

Hierarchical clustering and WGCNA analysis
Hierarchical clustering was performed to evaluate TauR406W-
associated, differentially-expressed transcripts (n= 4992
genes), based on the joint regression model. Normalized ex-
pression counts for differentially-expressed genes were used
as input. Pearson correlation was used as the distance metric
and the complete linkage was used for distance calculation.
Heatmaps of hierarchically clustered transcripts were gener-
ated using the heatmap.2 function from the gplots package
in R. Based on a non-negative matrix factorization (NMF)
rank survey using the NMF package in R [40], the optimal
number of clusters was determined to be 6, maximizing
cophenetic scores while minimizing residuals (Additional file
1: Figure S12). This was applied to the clustering as a manual
tree cut to yield 6 final clusters. Functional enrichment for
cluster gene set was performed as described above. Concord-
ance between transcripts in each cluster with corresponding
proteins detected in the TauR406W proteomic data was fur-
ther evaluated by comparing the directions of log2 fold-
changes. Median expression counts of genes belonging to
each cluster were calculated from normalized expression
values from all replicates in each genotype (TauR406W or con-
trol set 2) and age.
Weighted gene coexpression network analysis (WGCNA)

[41] was performed on expression counts from all
TauR406W transcripts (n = 10,217 genes) after normalization
in DESeq2 (median-of-ratios depth normalization). The
soft threshold parameter was set at 5, deepSplit = 4, and

minimum module size = 23. Expression behavior of
WGCNA modules were summarized by calculating
module “eigengenes”. Module eigengene is defined by PC1
loadings of a given module. Closely related modules were
merged based on module eigengenes at a distance
threshold of MEDissThres = 0.1. The cluster dendrogram
and module membership of transcripts are displayed in
Additional file 1: Figure S13. Module eigengenes of each of
the 15 resulting modules was examined for correlation with
the TauR406W genotype via Pearson correlation (Additional
file 1: Figure S10). Normalized expression of genes in
modules with module eigengenes that have significant
correlation to the TauR406W genotype were further
evaluated in TauR406W animals and controls (control set 2).

Drosophila and human gene set overlaps
In order to evaluate human-fly gene set overlaps, we first
determined the fly homologs for all human AD, tangle, or
PSP differentially-expressed genes using the DRSC Inte-
grated Ortholog Prediction Tool (DIOPT [42];), applying a
minimum DIOPT score threshold of 5 (Additional file 2:
Table S9). Where more than one fly homolog had a DIOPT
score > 5, all were included. We then computed enrich-
ments of each human-derived data set (fly homologs) for ei-
ther (i) Tau- or (ii) age-induced differentially expressed
gene sets, based on our experimental analyses in Drosophila
models, using the phyper base function of R to conduct a
hypergeometric test. For Tau-induced fly genes, we include
significant, differentially expressed genes from either the
TauR406W or TauWT joint regression model (age-adjusted).
For aging-induced fly genes, we considered all unique dif-
ferentially expressed genes based on our analyses of elav
control flies from multiple timepoints (1 vs. 10 days, 10 vs.
20 days, and 1 vs. 20 days), including from control sets 1 &
2 for transcriptome studies or the complementary prote-
omic control set. For human-to-fly hypergeometric tests
the overall background parameters for population size and
population successes were based on the total number of
unique and differentially-expressed genes in the Drosophila
datasets: 17,104 and 5716, respectively, for the transcrip-
tome, or 2742 and 548, respectively for the proteome.
Other parameter values were as follows:

Human Data Set Sample Size Sample Successes

AD Transcriptome 2426 1181

PSP Transcriptome 447 239

Tangle Transcriptome 1639 820

AD Proteome 524 63

For the analyses integrating Drosophila RNA-seq and
published modifiers, we again used DIOPT to determine
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the human homologs of relevant fly genes (DIOPT
score > 5).

Validation of RNA-seq and LC-MS/MS
For independent experimental validation of
transcriptomic and proteomic findings, respectively,
reverse transcription quantitative polymerase chain
reaction (RT-qPCR) and western blots were performed
following standard protocols as in prior published work
[31]. For validation of RNA-seq, we examined the top
TauR406W-induced differentially expressed transcripts
(FDR < 0.05) at 10 days, including 10 up- and 10 down-
regulated transcripts, ranked based on high fold-change
and low coefficient of variation (CV < 0.3). PCR primers
were selected using the FlyPrimerBank [43] (Additional
file 1: Figure S4), and gene expression was normalized
relative to Rpl32. For validation of LC/MS-MS, we con-
sidered 10 top-ranked gene expression changes in
TauR406W transgenic flies for which antibodies were
available. We first ranked all significant results based on
log fold change from the age-adjusted regression analysis
restricted to non-missing proteins (Additional file 2:
Table S12) and selected the top 50 up- and down-
regulated proteins. From this list of 100 proteins, we
were able to identify and obtain antibodies for 7 targets:
Mlp84B, Chic, Cp1, Gp93, Pdh, Futsch, and Chp. The
specific timepoint for evaluation was selected based on
the cross-sectional analysis (Additional file 2: Table S2).
This candidate list was supplemented with 3 additional
protein targets with missing data (Arf79F, Fln, Psc),
based on a similar rank-list of the full imputed cross-
sectional analysis. Western blots were performed using
the following antibodies and dilutions: rabbit anti-
Mlp84B (1:200, from Dr. Mary Beckerle), mouse anti-
chic (1:10, DSHB), mouse anti-Cp1/CTSL (clone 193,
702, MAB22591, 1:1000, R&D Systems), rabbit anti-
Gp93 (1:500, from Dr. Christopher Nicchitta), rabbit
anti-Pdh (1:1000, from Dr. Craig Montell), mouse anti-
futsch (1:50, DSHB), mouse anti-chp (1:500, DSHB),
mouse anti-fln (1:500, DSHB), mouse anti-Psc (1:5,
DSHB), goat anti-Arf79F/ARF1 (ab58578, 1:250,
Abcam), rabbit anti-GAPDH (1:2000, GeneTex), and
mouse anti-Tubulin (DM1A, 1:1000, Sigma).

Results
Paired tau transcriptomes and proteomes in Drosophila
Longitudinal, parallel RNA-seq and mass-spectrometry
proteomics were performed in controls (elav-GAL4) and
in flies with pan-neuronal expression of human wildtype
(elav > TauWT) or mutant Tau (elav > TauR406W). The
transgenic genotypes and age timepoints (1-, 10-, and
20-days) selected for this analysis have been extensively
characterized in prior published work [6, 22], and we
confirmed that TauWT and TauR406W are expressed at
similar levels (Additional file 1: Figure S1). Overall, our
quality-controlled and filtered datasets include 17,104
transcripts and 2723 proteins. We first analyzed our re-
sults cross-sectionally, highlighting those transcripts or
proteins significantly differentially expressed (FDR <
0.05) at each timepoint (Table 1; Additional file 2: Table
S2). Overall, TauWT altered expression of 1514 tran-
scripts and 213 proteins. At each age examined,
TauR406W induced a ~ 4- to 7-fold greater number of dif-
ferentially expressed genes than TauWT, highlighting
5494 transcripts and 697 proteins. There was substantial
overlap between the TauWT and TauR406W gene expres-
sion profiles, with 70% of TauWT-associated transcripts
showing consistent changes in TauR406W flies (65% of
proteins) (Additional file 1: Figure S2). Overall, nearly
equal numbers of up- or down-regulated, differentially
expressed genes were detected in the Tau transcriptome;
whereas in the proteome, Tau-induced gene up-
regulation was more common by a factor of 2, which
may reflect reduced assay sensitivity for proteins with
low expression levels (Additional file 1: Figure S3). Using
RT-qPCR and western blots, we obtained consistent, in-
dependent experimental evidence to support validation
of 15 out of 20 (75%) differentially-expressed transcripts
and 8 out of 10 proteins (80%), systematically prioritized
based on results from RNA-Seq and LC-MS/MS, re-
spectively (Additional file 1: Figures S4 and S5).
As in human tauopathy, the neurodegenerative

phenotypes manifested by Tau transgenic flies are
progressive with aging [22]. Consistent with this, we
observed age-dependent differences in the number and
identity of differentially expressed genes across the time-
points examined (Additional file 1: Figure S2). For ex-
ample, only a minority (~ 9%) of transcripts from TauWT

Table 1 Tau-triggered differentially expressed genes

Day 1 Day 10 Day 20 Total

cross-sectional age-adjusted

TauWT 491 (54) 431 (143) 1096 (76) 1514 (213) 1653 (123)

TauR406W 3179 (97) 1616 (173) 4087 (581) 5494 (697) 4992 (503)

Differentially-expressed transcripts (and proteins, in parentheses) are indicated based on cross-sectional comparisons in 1-, 10-, or 20-day-old elav > TauWT or
elav > TauR406W animals and controls. Based on PCA analysis [31], the decrease in differentially expressed transcripts at day 10 in TauR406W flies is likely due to
sample heterogeneity. The total number of unique differentially expressed transcripts/proteins from the cross-sectional analyses are also indicated, along with
complementary results from the joint regression model including all longitudinal data and adjusting for age. Statistical analysis was based on a Wald test
(FDR < 0.05). See Additional file 2: Tables S2 and S5 for complete results
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flies were consistently, differentially expressed at all 3
timepoints. The profound impact of aging on the Dros-
ophila brain transcriptome and proteome is readily ap-
parent in transcriptome-wide heatmaps (Fig. 1a,b) and
unsupervised clustering analysis further highlights age as
a major driver of gene expression differences among
samples (Additional file 1: Figure S6). Indeed, among
control animals, we documented age-related, differential
expression of 6742 transcripts and 1155 proteins (Table 2
and Additional file 2: Tables S3, S4), and similar changes
were seen in analyses of aged Tau animals (within geno-
type comparisons of data from different timepoints).
Strikingly, approximately 70% of Tau-triggered

transcripts overlap aging-associated gene expression
changes. These data highlight an intimate connection
between aging and Tau-mediated perturbations in gene
expression.

Integrated longitudinal analysis of differentially expressed
transcripts and proteins
In order to identify the most robust, Tau-induced ex-
pression changes independent of aging, we used linear
regression and considered all longitudinal data in a joint
model, including a covariate to adjust for age. In separ-
ate analyses of TauWT and TauR406W, we identify 1653
and 4992 significant differentially expressed transcripts,
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Fig. 1 Tau-triggered differentially expressed genes. a Gene expression heatmap showing replicate samples from control flies (elav, n = 3) and
elav > TauWT (TauWT, n = 3) grouped by age (1-, 10-, and 20-days). Columns denote individual samples. Rows consist of clustered, normalized
expression values for all differentially-expressed transcripts (n = 1653, FDR < 0.05) based on the joint regression model adjusting for age. Each
column represents an individual sample. In both control and TauWT animals, age is the dominant driver of gene expression patterns. b Gene
expression heatmap showing replicate samples from batch-matched control flies (elav, n = 2) and elav > TauR406W (TauR406W, n = 3). Rows consist
of clustered, normalized expression values for all differentially-expressed transcripts (n = 4992, FDR < 0.05) based on the joint regression model
adjusting for age. While age remains a major driver, TauR406W has a more substantial and appreciable impact on expression pattern compared
with TauWT (a, above). c Plot (top) showing TauR406W-triggered log2 fold-change (LFC) in the transcriptome and proteome. The plot only includes
those genes detected as both transcripts and proteins and also differentially expressed (n = 1477, FDR < 0.05), based on the joint regression
model including longitudinal data and adjusting for age. Colors denote whether the gene was differentially expressed in the transcriptome
(unfilled), proteome (blue), or both (orange). Quadrants I and III include gene expression changes that are concordant (same direction) at the
transcript and protein level; whereas quadrants II and IV depict discordant changes. A substantial proportion of differentially-expressed transcripts
or proteins are discordant (table, bottom). See Fig. 2 and Additional file 1: Figure S8 for selected examples (labeled)
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respectively (Table 1 and Additional file 2: Table S5).
The same approach was applied to the longitudinal
proteomic data. To better understand the joint impact of
Tau on the transcriptome and proteome, we next exam-
ined those genes detected by both the RNA-seq and
mass-spectrometry assays (n = 2395 and 2423 for TauWT

and TauR406W, respectively). For this and subsequent
analyses, we focus on the TauR406W dataset given the
more substantial number of differential expression
changes (analyses of TauWT are included as supplemen-
tal data and show consistent results). Remarkably,
among 1309 TauR406W-triggered, differentially expressed
transcripts with corresponding proteome measurement,
only 58% show concordant changes in the proteome
(same direction of change, regardless of significance)
(Fig. 1c and Additional file 1: Figure S7). These data in-
dicate that for a substantial proportion of transcriptional
changes (42%), the behavior of corresponding proteins is
discordant. Regression-based modeling of concordance
(see Methods), incorporating both direction of effect and
fold-change, confirmed that Tau-associated differential
expression in the transcriptome is a weak but significant
predictor of proteome behavior (estimate = 0.58, p =
8.7 × 10− 5). Since this analysis includes many transcripts
with non-significant changes in the proteome, we also
performed a more stringent, secondary analysis limited
to 261 genes showing TauR406W-triggered, differential
expression in both transcriptome and proteome. Among
this subset, concordance was 77% based on consistent
direction of change. While regression models confirmed
increased concordance, there was no longer a significant
relation between transcriptome and proteome behavior
in this smaller sample (estimate = 0.65, p = 0.18). Con-
sistent with these results, out of 503 significant, differen-
tially expressed proteins induced by TauR406W, 272 (48%)
are unique to the proteome (e.g. either non-significantly
changed or not detected in the transcriptome).
Tau-mediated perturbations of the transcriptome and

proteome are readily appreciated in an integrated plot
(Fig. 1c) including all significant, differentially expressed
transcripts and/or proteins, and representative examples
discussed below are highlighted in Fig. 2 (see also

Additional file 1: Figure S8). Concordant activation or
suppression of gene expression, respectively, is
represented in the upper right (I) and lower left
quadrants (III) of the plot. Many Tau-responsive genes
show highly consistent and concordant expression
changes in transcripts and proteins. Transferrin 1 (Tsf1)
encoding an iron-binding protein induced during the
Drosophila innate immune response [44] is strongly acti-
vated by TauR406W, showing similar ~ 2-fold increase in
both the transcriptome and proteome, and these changes
are largely consistent in 1-, 10-, and 20-day-old animals.
Reciprocally, Synaptotagmin-1 (Syt1), encoding the es-
sential calcium sensor for synaptic vesicle release and
neurotransmission [45], is decreased 10% at the tran-
script level and 40% at the protein level, and this result
agrees with prior targeted studies of synaptic proteins in
TauR406W flies [46]. By contrast, Tau-triggered gene ex-
pression changes that are discordant between the tran-
scriptome and proteome occupy the upper left (II) and
lower right (IV) quadrants of the plot (Fig. 1c). For ex-
ample, Synaptobrevin (nSyb), which participates in syn-
aptic vesicle fusion and release [47], is increased in Tau
flies, whereas nSyb transcripts are reciprocally decreased.
Alternatively, in the case of Sar1, encoding a GTPase in-
volved in endocytic trafficking [48], we detect a Tau-
associated increase in transcripts, whereas Sar1 protein
is decreased. Such discordant changes may suggest the
possibility of feedback regulation between the transcrip-
tome and proteome. In other cases, we detect significant
Tau-induced changes in the proteome without a corre-
sponding change in transcript levels. One such example
is CCT1, encoding a cytosolic chaperone implicated in
cytoskeletal regulation and nerve injury response [49].
As suggested above, aging has a profound impact on

brain gene expression and frequently modifies the
impact of Tau, sometimes with divergent consequences
in the transcriptome and proteome. For example, aging
is associated with a substantial increase in Tsf1
transcript expression in both Tau and control animals
(~ 3- and 6-fold, respectively), whereas protein expres-
sion appears stable over the same timecourse. The im-
mune response gene, Attacin-A (AttA), encoding an
antimicrobial peptide, provides another striking example.
RNA-seq reveals a consistent aging- and Tau-associated
increase in AttA transcripts. However, the substantial
Tau-associated increase observed in the proteome of 1-
day-old flies is attenuated during aging and no longer
detected by 20-days (genotype x age interaction, p =
3.78 × 10− 3). The sharp increase of AttA in wildtype flies
with aging was previously reported and linked to neur-
onal maintenance [50]. Notably, in our age-adjusted
joint model, only 35% of Tau-triggered differentially
expressed transcripts were fully independent of aging. By
contrast, the majority (65%) were both Tau- and aging-

Table 2 Aging-triggered differentially expressed genes

Control TauR406W Change

Transcripts 6742 7970 + 18%

Proteins 1155 258 −78%

In TauR406W animals, aging is associated with an increased number of
differentially-expressed transcripts but a decreased number of proteins.
Differentially-expressed transcripts and proteins were determined by
comparing aged animals, stratified by genotype, analyzing elav (control) or
elav > TauR406W animals separately. The total number of unique, differentially-
expressed transcripts or proteins are shown based on the union of 3
comparisons (1- vs. 10-days, 10- vs. 20-days, and 1- vs. 20-days). Statistical
analysis was based on a Wald test (FDR < 0.05). See Additional file 2: Tables S3
and S4 for complete results
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associated gene expression changes (Additional file 1:
Figure S9). Given the pervasive impact of aging, we again
carefully considered all aging-associated changes, focus-
ing on relative changes across the transcriptome and
proteome, as well as a potential interaction with Tau-
mediated toxicity (Table 2 and Additional file 2: Table
S3, S4). Interestingly, in TauR406W flies we note an ~
18% increase in aging-associated transcripts, with 7970
genes affected (versus 6742 in controls). However, within
the proteome, the reverse pattern is seen with only 258
age-associated protein changes detected (versus 1155 in
controls), representing a 78% reduction, and potentially
consistent with published reports of Tau-induced trans-
lational dysregulation [31, 51, 52] (see Discussion). A
similar trend for the proteome is observed in TauWT an-
imals; although, the magnitude of changes was more

modest (Additional file 2: Table S4). In sum, these data
reveal unexpected and dynamic interactions between
Tau and aging and their divergent impact on the tran-
scriptome and proteome.

Tau-induced gene expression networks implicate aging
and innate immune pathways
In order to reveal the broader biological processes
disrupted by Tau, we next performed overrepresentation
analysis using gene ontology (GO) annotations
(Additional file 2: Table S6). We again focused on the
TauR406W age-adjusted dataset, given the greater number
of differential expression changes, and we initially exam-
ined the transcriptome. Complementary analyses of
TauWT are included in the supplemental data. Among
all differentially expressed transcripts, we detected

Fig. 2 Examples of Tau-induced changes in the transcriptome and proteome. log2-transformed expression of selected genes in elav > TauR406W

(Tau, red) and elav (Control, gray) is shown for transcriptome (depth normalized counts) and proteomes (normalized label-free quantification
intensity (LFQ)). Genes were selected to be representative within our dataset and are all differentially expressed (FDR < 0.05) in both the
transcriptome and proteome, based on the joint regression model including all longitudinal data and adjusting for age. CCT1 is only
differentially-expressed at the protein level. AttA and CCT1 transcripts (bottom) are plotted on a different scale than the other examples due to
the increased dynamic range of changes (for AttA). Additional example plots can be found in Additional file 1: Figure S8
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significant enrichment for genes implicated in synaptic
function (p = 6.4 × 10− 35), innate immunity (p = 3.4 ×
10− 14), the cytoskeleton (p = 4.6 × 10− 11), and endocyto-
sis (p = 2.8 × 10− 9). One potential limitation of this ap-
proach is that it considers the entire transcriptome as a
single regulatory unit and may therefore be underpow-
ered to detect more restricted network modules. There-
fore, in order to partition the transcriptomic data into
coregulated gene sets, we implemented unsupervised
hierarchical clustering and defined 6 discrete gene sets
(n = 33–1863 genes; Additional file 2: Table S7), equally
divided between Tau-associated up- and down-regulated
groups (Fig. 3). As expected, each cluster was signifi-
cantly enriched for genes corresponding to the biological
pathways outlined above (Additional file 2: Table S8),
consistent with identification of discrete transcriptional
regulatory networks. Four gene clusters revealed strong
age-dependent changes in both control and Tau flies,

including both age-dependent decreases (clusters 1 & 3)
or increases (clusters 2 & 4). As expected, these clusters
(1–4) strongly overlap with age-associated gene expres-
sion changes obtained from controls (mean = 78%, range
66–85% overlap). Interestingly however, we observe 2
distinct patterns for the relationship between Tau- and
aging-associated transcriptome changes. First, in gene
sets enriched for immune (cluster 2, increasing with age)
or synaptic biology (cluster 1, decreasing with age), Tau
amplifies the “aging expression signature”. Conversely, in
clusters 3 and 4—enriched for developmental and chro-
matin biology, respectively—Tau opposes the age-
associated changes. Thus, these 2 alternate patterns con-
form to accelerated versus delayed brain aging, based on
the transcriptome responses. In contrast, neither of the
remaining clusters reveal strong age-dependent changes
in control flies, with Tau triggering decreased (cluster 5)
or increased (cluster 6) gene expression. Interestingly, in

Fig. 3 Tau-triggered gene expression clusters. Hierarchical clustering identified 6 gene sets with related Tau-induced expression patters (See also
heatmap in Fig. 1a). Boxplots show log2-transformed median expression of genes within each cluster, including elav > TauR406W (Tau, red) and
elav (Control, blue). Clusters are annotated based on size and significantly enriched gene ontology terms. See also Additional file 1: Figure S10,
S11 and Additional file 2: Tables S7, S8
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cluster 5, enriched for RNA and metabolic processes,
the Tau-induced downregulation in the transcriptome
appears to be attenuated by aging. As a complementary
strategy to define Tau-associated gene regulatory net-
works, we also implemented weighted gene correlation
network analysis (WGCNA), identifying 15 mutually ex-
clusive transcriptional modules (Additional file 2: Table
S7). Among these, we found 7 modules significantly as-
sociated with Tau genotype in TauR406W flies (Additional
file 1: Figure S10). Moreover, these modules substantially
overlap with the gene sets defined using hierarchical
clustering, resulting in similar functional enrichment
profiles and recapitulating consistent interrelationships
with aging (Additional file 2: Tables S7, S8).
In parallel analyses of the TauR406W proteome dataset,

we detected enrichment among differentially expressed
proteins for translation (p = 3.1 × 10− 11), including a
preponderance of ribosomal proteins (p = 5.2 × 10− 19)
(Additional file 2: Table S6). We next integrated the
transcriptome derived clusters with complementary data
from proteomics. Consistent with our analyses described
above, we found variable concordance among the
clusters, based on the direction of differential expression
detected in the proteome (Additional file 1: Figure S11).
For example, clusters enriched for immune and synaptic
function were reciprocally up- or down-regulated in Tau
animals, but both gene sets were predominantly (~ 60%)
concordant in the proteome—differentially expressed
proteins show consistent direction of change in
TauR406W flies. By contrast, cluster 5, implicated in RNA
processing and metabolism, showed only 39% concord-
ance, suggesting opposing regulatory interactions be-
tween the transcriptome and proteome.

Cross-species annotation of tau-specific changes from
human brain gene expression profiles
Gene expression analysis from human postmortem brain
tissue is confounded by mixed pathologies, making it
difficult to identify those changes that are specifically
triggered by Tau versus aging or other brain lesions. In
contrast, our transcriptomic and proteomic analyses in
flies benefit from matched experimental controls and
longitudinal sampling, allowing definitive identification
of Tau-triggered changes. We therefore leveraged our
Drosophila results to annotate potential Tau-specific
transcriptional changes from human brain gene expres-
sion profiles. We focused on 3 published analyses of dif-
ferential gene expression, in relation to (i) AD clinical-
pathologic diagnosis (n = 478 cases / 300 controls [10];),
(ii) PSP clinical-pathologic diagnosis (n = 82 cases / 76
controls [9];), or (iii) neurofibrillary tangle pathologic
burden (n = 478 brains [11];). As expected, following
homology mapping using the Drosophila Integrated
Ortholog Prediction Tool [42]; 57–66% of human genes

had well-conserved fly homologs. The results of lookups
are summarized in Table 3, and detailed results are in-
cluded in Additional file 2: Table S9. In all 3 datasets,
roughly half of conserved, differentially expressed
changes are nominated as directly triggered by Tau
pathology, based on cross-species annotation. Import-
antly, the observed human-fly overlaps appear more
likely than that expected due to chance (hypergeometric
test: AD, p = 1.36 × 10− 63; PSP, p = 8.63 × 10− 19; tangle
burden, p = 1.81 × 10− 48). Moreover, ~ 50–60% of over-
lapping differentially expressed genes were concordant
across species (i.e. gene up-regulation in both human
AD and Drosophila Tau transcriptomes) (Additional file
2: Table S9). In a complementary analysis, we also exam-
ined the differentially expressed gene sets from human
postmortem brains for overlaps with Drosophila aging-
induced gene expression changes (Table 3 and Add-
itional file 2: Table S9). An even greater proportion (~
70%) of human genes altered in tauopathy showed con-
served changes during brain aging in flies. In fact, few
human genes specifically overlapped with the Tau data-
set, with 90% overlapping both the Tau and aging differ-
entially expressed gene sets. Lastly, we leveraged our fly
proteomic data to annotate a recently reported mass-
spectrometry dataset of differentially expressed proteins
from 453 human brains, including 196 AD clinical-
pathologic cases and 257 controls [18]. Despite the re-
duced depth of coverage for proteomics, this additional
analysis highlights 63 proteins differentially expressed in
human AD for which fly protein homologs are similarly
dysregulated in response to Tau; 471 proteins over-
lapped with the complementary fly aging-dysregulated
proteins. Consistent results were obtained from an add-
itional human tandem mass tag proteomics dataset [53]

Table 3 Tau- and aging-induced changes from cross-species
overlaps

Human Drosophila

Expression Dataset Genes (Conserved) Tau (%) Aging (%)

AD 3774 (2426) 1181 (48.7%) 1666 (68.7%)

PSP 745 (447) 239 (53.5%) 321 (67.3%)

Tangles 2485 (1639) 820 (50.0%) 1162 (70.9%)

AD (proteins) 959 (524) 63 (12.0%) 471 (89.9%)

We examined differentially expressed transcripts from published RNA-seq
analyses of human postmortem brain, including AD cases/controls [10], PSP
cases/controls [9], or quantitative neurofibrillary tangle burden [11]. We also
considered complementary mass-spectrometry proteomics from AD brains
[18]. The total number of unique, differentially expressed human genes are
noted along with the subset that are conserved in Drosophila. Among
conserved genes, we examined the number and percentage with Tau- or
aging-triggered differentially expressed homologs in flies. Given the reduced
coverage of proteomics, we only consider conserved human proteins in which
the homologous fly proteins were also detected in our assay. Overall
consistent results were obtained from an additional human tandem mass tag
proteomics dataset [53] including analyses of 18 AD cases and 18 controls. For
detailed results, see Additional file 2: Table S9
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including analyses of 18 AD cases and 18 controls (Add-
itional file 2: Table S9).

Resolving amplifying versus protective expression
changes using genetic modifiers
Tau-associated gene expression changes are excellent
candidates for causal mechanisms in tauopathies—those
with the potential to alter disease onset, progression,
and/or neurodegeneration (Fig. 4). Alternatively,
differentially expressed genes may define non-causal per-
turbations—such changes may represent candidates as
biomarkers for the neuronal injury accompanying neuro-
fibrillary tangle pathology. Similar to recently published
work [54], in order to identify potential causal gene ex-
pression changes, we integrated our findings with avail-
able results from 3 published, unbiased Drosophila
screens, together defining 84 genetic modifiers of Tau-
mediated neurotoxicity [23–25]. Among these, 37 genes
were differentially expressed in the transcriptome and/or
proteome (either TauWT or TauR406W) (Table 4 and
Additional file 2: Table S10). Next, for each of these 37
genes, we examined the direction of modifier tests from
the literature to resolve whether the Tau-induced gene
expression changes (up- or down-regulation) represent
“amplifying” versus “protective” responses—that is,
whether the observed perturbation in expression likely
mediates or rather compensates for Tau-induced neur-
onal injury (Fig. 4). Up-regulated genes were defined as
“amplifying” if genetic knockdown suppressed Tau tox-
icity and/or if overexpression reciprocally enhanced Tau
phenotypes. For example, expression of Ubiquitin

Fig. 4 Model for integrating Tau-induced gene expression changes
and modifiers. Schematic diagram illustrating the relationship
between Tau-induced perturbations in gene expression and
potential impact on neurodegeneration. Tau may cause up- or
down-regulation for a given gene of interest, and either change
may amplify (red) or protect against (green) neurotoxicity.
Recapitulating the observed gene expression change through
experimental manipulations and observing the consequences for
neurodegenerative phenotypes permits reconstruction of the causal
chain. See Table 4 for specific examples

Table 4 Integration of gene expression with genetic modifiers
Drosophila Human

Gene Amplifying vs.
Protective

AD Tangles

up-regulated

cher A

Uba1 A

Myd88 A MYD88

CG10889 A ZC3H12C

CG7970 A

Elf A GSPT1 EIF2S1

Fs(2)Ket A

Mekk1 A

Nrg A CHL1 NRCAM

smid A

Diap1 A BIRC3

wun A PLPP1

Stip1 P STIP1

RpS21 P RPS21

Past1 P EHD2

Tis11 P ZFP36L1,
ZFP36L2

w P

Gbs-70E P PPP1R3C

cher P

dally P

down-regulated

fry A FRYL

Ptp4E A

Atg6 A

Fmr1 A

mub A

Bacc A

jing P AEBP2

E(bx) P BPTF

tou P BAZ2B

jar P

Mi-2 P CHD5, CHD4 CHD4

sgg P

milt P TRAK2

stg P CDC25B CDC25B

twe P CDC25B CDC25B

Atx2 P ATXN2L

CG7231 P

All Drosophila genes listed (at left) are modifiers of Tau-mediated
neurodegeneration based on published unbiased screens [23–25]. Direction of
Tau-induced differential expression is noted, including up- (top) or down-
regulation (bottom) of transcripts. Based on the results of modifier tests, we can
infer whether the observed Tau-induced expression perturbation is amplifying
(A) or protective (P) for Tau neurotoxicity. See also Fig. 4 and Additional file 2:
Table S9 and S10. For each fly gene, we also note whether human gene
homolog(s) are differentially expressed in human postmortem brain tissue from
published analyses of AD [10] and neurofibrillary tangle burden [11]. In cases
where the direction of expression was concordant with Drosophila, the human
gene name is indicated in boldface. In a smaller PSP dataset [9], only 1 fly gene,
mub, had a differentially-expressed human homolog, PCBP4
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activating enzyme 1 (Uba1), a regulator of axon pruning,
autophagy, and apoptosis [55–57], is significantly in-
creased in TauR406W flies. In published work [24], over-
expression of Uba1 enhanced Tau-induced retinal
degeneration, suggesting that the observed up-regulation
likely promotes (amplifies) Tau toxicity. Conversely, ex-
pression of Mi-2, encoding a CHD-family, chromatin-
remodeling enzyme, is significantly decreased in
TauR406W flies; however, since Mi-2 is a loss-of-function
suppressor of Tau neurotoxicity [25], we annotate this
as a compensatory (protective) change. Interestingly,
Uba1 and Mi-2 are members of expression clusters 2 &
4, respectively (Fig. 3 and Additional file 2: Table S7),
which are similarly characterized by age-associated up-
regulation but reveal opposing Tau-associated perturba-
tions. Overall, we identify 18 amplifying (A) and 19 pro-
tective (P) gene expression changes induced by Tau.
Thus, our transcriptome and proteome data can be inte-
grated with genetic modifier studies to reconstruct a causal
chain linking Tau, specific gene expression perturbations,
and neurodegeneration. Moreover, 21 out of the 37 genes
with published modifiers are also differentially expressed in
one of the human datasets (Table 4 and Additional file 2:
Table S9). For example, CHD5 (homolog of Mi-2) is de-
creased in human brains with AD pathology. Based on the
complementary studies of fly Mi-2, we can infer a potential
Tau-triggered protective perturbation. These results dem-
onstrate how Drosophila gene expression and genetic ma-
nipulation can be integrated to annotate human data for
potential causal changes.

Discussion
Prior studies have profiled brain gene expression in Tau
transgenic animals, including in flies [29, 30, 58] and
mouse models [10, 20, 51]; however, none to our
knowledge have longitudinally assessed both transcripts
and proteins in parallel. Our joint analyses therefore
provide a glimpse of the dynamic regulatory crosstalk
between the brain transcriptome and proteome
accompanying brain injury, as in tauopathy. Remarkably,
42% of Tau-induced expression changes were discord-
ant, with transcript and protein changing in opposite di-
rections. This result is largely consistent with other
emerging findings of surprisingly poor correlation be-
tween mRNA and protein levels among a variety of ex-
perimental systems [16, 59–62], including analyses of
human postmortem brain tissue [17, 18, 63]. In one not-
able study relevant to AD, a similar fraction (40%) of dif-
ferentially expressed transcripts in the 5XFAD amyloid
precursor protein transgenic mouse showed discordant
changes in the proteome [64]. Many discordant changes
likely reflect regulatory feedback interactions that main-
tain protein homeostasis. Consistent with this, we found
that transcript-protein concordance varied among

coexpressed, and therefore likely coregulated, gene sets.
Our longitudinal data also provides clues to primary per-
turbations in selected cases (e.g. Sar1 in Fig. 2); however,
additional studies will be needed to confirm. Ultimately,
successful translation from expression profiling studies
requires unambiguous determination of whether a gene
of interest is up- or down-regulated, but interpretation is
currently limited by transcriptome-only analyses in most
cases. Indeed, whether for nomination of potential thera-
peutic targets or development of diagnostic biomarkers,
it will be essential to understand consequences at the
protein level. We note that, among all differentially
expressed transcripts, only a minority (~ 4%) were sig-
nificantly and concordantly differentially expressed pro-
teins--the remainder were either non-significantly
differentially expressed, significant but discordant, or not
detected at all by proteomics. Nevertheless, despite the
comparatively reduced coverage of proteomics (~ 2700
proteins vs. ~ 17,000 transcripts), many differentially
expressed genes would not have been detected at all
based on isolated transcriptional profiling. In the future,
characterization of the proteome in Drosophila tauopa-
thy models can be further enhanced by applying newer,
more comprehensive methods (e.g. tandem mass tag
labeling).
Age is the strongest known risk factor for AD, and

aging-dependent progression is a defining feature of AD
and other neurodegenerative tauopathies. As in studies
of human postmortem tissue, most gene expression ana-
lyses of tauopathy models have been cross-sectional, par-
tially obscuring the impact of aging and potential
interactions with Tau-mediated changes. In our analyses,
the majority (~ 70%) of Tau-triggered transcripts or pro-
teins overlapped with those changes observed in aged
control animals. Importantly, our longitudinal experi-
mental design permitted identification of Tau-associated
expression changes robust to aging adjustment. Remark-
ably however, even after adjustment, most Tau-mediated
perturbations overlap with those seen in aging, and our
cross-species analysis suggests consistent results for hu-
man tauopathy expression signatures. In short, our find-
ings suggest that Tau pathology primarily modulates the
endogenous gene expression programs of brain aging.
Indeed, following hierarchical clustering, 4 out of 6 dif-
ferentially expressed gene sets mirrored aging expression
patterns, consistent with either Tau-accelerated or de-
layed aging. These complementary patterns may repre-
sent disease amplifying or protective responses,
respectively, as shown for Uba1 and Mi-2. Interestingly,
aging was associated with a quantitatively enhanced
transcriptional signature in the Tau transgenic animals,
characterized by an 18% increase in differentially-
expressed genes. Reciprocally, Tau expression was ac-
companied by a 78% reduction in age-associated changes
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in the proteome. Though further investigation is war-
ranted to confirm these observations, our analyses define
Tau expression signatures in the both transcriptome and
proteome enriched for genes implicated in translation,
including numerous ribosomal proteins. Emerging evi-
dence from both fly and mammalian animal models of
tauopathy, as well as human postmortem tissue, suggest
that Tau may be directly neurotoxic to transcription and
translation. Specifically, pathologic forms of Tau interact
with numerous RNA-binding protein factors comprising
both the spliceosome and ribosome, and resulting dis-
ruptions of splicing and protein translation, respectively,
likely contribute to Tau-mediated neurodegeneration
[31, 51, 52].
While aging has myriad systemic and cellular targets,

one key emerging theme is the dysregulation of innate
immune mechanisms leading to a systemic pro-
inflammatory state, which has been termed “immunose-
nescence” or “inflamm-ageing” [65, 66]. In our analysis,
innate immune pathways were strongly enriched among
both aging- and Tau-associated, differentially expressed
genes, and this result is consistent with brain gene ex-
pression profiling in mouse models of healthy aging [10,
67] and tauopathy [68, 69]. Similarly, multiple transcrip-
tome- and proteome-wide analyses of human postmor-
tem brain from AD or other tauopathies, such as PSP,
have identified evidence of dysregulated immune path-
ways [9–11, 18], and similar signatures have been impli-
cated in brains from aged individuals without known
neurodegenerative disease [70, 71]. Importantly,
genome-wide association studies in AD highlight an
abundance of susceptibility gene candidates implicated
in immune regulation (e.g. TREM2, CD33, CR1),
strongly suggesting a causal role in disease pathogenesis
[72]. Further, polygenic modeling [73] and analyses of
human cortical transcriptomes [74] converge to impli-
cate activated microglia in the development of Tau path-
ology and susceptibility for AD. Numerous follow-up
studies, including in mouse and cellular models, impli-
cate microglia and astroglia with potential roles in
propagating a pathogenic inflammatory cascade [75].
However, the prevailing mechanistic models of neuroin-
flammation in AD have largely focused on amyloid-beta
as an upstream trigger and tau pathology as a down-
stream consequence, and the role of aging per se is often
minimized. Nevertheless, primary tauopathies lacking
amyloid pathology, such as PSP, and corresponding
mouse models manifest prominent neuroinflammatory
brain expression signatures. By contrast with mammals,
neurons significantly outnumber glia in the Drosophila
brain, and true microglial cells are not present in inver-
tebrates [76]. Nevertheless, innate immune pathways are
evolutionarily ancient, and toll-like receptor signaling
components are not only expressed in fly neurons and

glia, but they are required for brain maintenance in
aging [50, 77]. In the future, single-cell RNA-seq in
Drosophila models of tauopathy may permit dissection
of which cell types generate immune expression signa-
tures along with complementary cell-type specific ma-
nipulations to confirm potential causal roles.
Gene expression profiling has emerged as a promising

tool for functional genomic dissection of AD and other
tauopathies; however, interpretation of these data can be
powerfully enhanced by integration with complementary
studies in model organisms. We have performed several
cross-species analyses to highlight applications of our
Drosophila tauopathy resource. One important challenge
is to differentiate those gene expression changes specific-
ally provoked by Tau-mediated mechanisms. Besides the
influence of aging and life experiences, human brains
commonly accumulate mixed pathologies [15]. By con-
trast, experimental models permit precisely-controlled
manipulations that can isolate the responsible causal
triggers. Roughly half of all conserved, differentially-
expressed genes from the largest available analyses of
human AD or PSP brain tissue were annotated as Tau-
induced perturbations based on our Drosophila experi-
ment. Remarkably, an even larger proportion of expres-
sion changes (70%) were triggered by aging and we
observed virtually complete overlap between Tau- and
aging-associated changes. This result reinforces the in-
timate connection between the impact of neurodegener-
ative pathologies and aging on brain gene expression.
Another major challenge following human gene expres-
sion analyses is to differentiate proximal causal pathways
from more downstream, non-causal consequences of
neurodegeneration. Experimental models permit con-
trolled manipulations that mimic observed expression
changes along with assessments to define potential im-
pact on neurodegenerative phenotypes. In particular,
Drosophila offers high-throughput genetics enabling un-
biased, large-scale genetic screens for modifiers of Tau-
mediated neurotoxicity [23–25]. By integrating these re-
sults with our RNA-seq findings, and cross-referencing
with human gene expression profiles, we successfully
highlight genes altered in human tauopathy that are
strong candidates for further investigation as either ampli-
fying or protective causal modifiers. In the future, targeted
genetic manipulations of other conserved, differentially-
expressed transcripts and/or proteins will significantly ex-
tend the value of our cross-species resource.

Conclusions
Our integrated, longitudinal analysis of the aging brain
in Drosophila tauopathy models identifies perturbations
affecting thousands of transcripts and hundreds of
proteins and highlight many promising biological
pathways. Among these, regulators of innate immunity,

Mangleburg et al. Molecular Neurodegeneration           (2020) 15:56 Page 14 of 17



the cytoskeleton, endocytosis, and synaptic transmission,
have independent support from genome-wide associ-
ation studies of AD [72, 78], neurofibrillary tangle bur-
den [79], and PSP [80], consistent with causal roles.
TauR406W, which causes familial FTD, was associated
with a stronger impact on gene expression than TauWT,
inducing up to 7-fold increased response in gene expres-
sion. While the overlap in differentially-expressed genes
suggests shared mechanisms, our finding is consistent
with both the enhanced neurotoxicity of TauR406W in
Drosophila [22, 81] and the more aggressive clinical pro-
file of familial FTD (versus late-onset AD) [1, 2]. More
broadly, we demonstrate pervasive overlap and recipro-
cal interactions between Tau- and aging-induced brain
expression signatures as well as surprising discordance
between transcripts and proteins. Lastly, cross-species
analyses reveal extensive overlaps between Drosophila
models and human postmortem brains with tauopathy.
These results thus comprise a powerful, functional gen-
omics resource for elucidation of Tau-mediated mecha-
nisms of neurodegeneration.
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