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Abstract

Background: The development of blood-based biomarker tests that are accurate and robust for Alzheimer’s disease
(AD) pathology have the potential to aid clinical diagnosis and facilitate enrollment in AD drug trials. We developed
a high-resolution mass spectrometry (MS)-based test that quantifies plasma Aβ42 and Aβ40 concentrations and
identifies the ApoE proteotype. We evaluated robustness, clinical performance, and commercial viability of this MS
biomarker assay for distinguishing brain amyloid status.

Methods: We used the novel MS assay to analyze 414 plasma samples that were collected, processed, and stored
using site-specific protocols, from six independent US cohorts. We used receiver operating characteristic curve
(ROC) analyses to assess assay performance and accuracy for predicting amyloid status (positive, negative, and
standard uptake value ratio; SUVR). After plasma analysis, sites shared brain amyloid status, defined using diverse,
site-specific methods and cutoff values; amyloid PET imaging using various tracers or CSF Aβ42/40 ratio.

Results: Plasma Aβ42/40 ratio was significantly (p < 0.001) lower in the amyloid positive vs. negative participants in
each cohort. The area under the ROC curve (AUC-ROC) was 0.81 (95% CI = 0.77–0.85) and the percent agreement
between plasma Aβ42/40 and amyloid positivity was 75% at the optimal (Youden index) cutoff value. The AUC-ROC
(0.86; 95% CI = 0.82–0.90) and accuracy (81%) for the plasma Aβ42/40 ratio improved after controlling for cohort
heterogeneity. The AUC-ROC (0.90; 95% CI = 0.87–0.93) and accuracy (86%) improved further when Aβ42/40, ApoE4
copy number and participant age were included in the model.
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Conclusions: This mass spectrometry-based plasma biomarker test: has strong diagnostic performance; can
accurately distinguish brain amyloid positive from amyloid negative individuals; may aid in the diagnostic
evaluation process for Alzheimer’s disease; and may enhance the efficiency of enrolling participants into Alzheimer’s
disease drug trials.
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Background
Alzheimer’s disease (AD) is the most common form of
dementia [1]. Globally, nearly 50 million people have
AD or a related dementia, yet only 25% of people living
with AD have been diagnosed [2, 3]. Currently, AD
affects 5.8 million Americans 65 years and older, and by
2050, AD prevalence in the US is expected to increase to
13.8 million [1]. AD is a progressive, irreversible degen-
erative condition that affects a person’s memory, cogni-
tive abilities, and personality. AD dementia is associated
with increased disease susceptibility in organs outside
the brain in ways that can ultimately lead to death. In
the US, AD is the sixth-leading cause of death.
With several promising AD-modifying therapies in

development, early detection of brain amyloidosis will be
imperative for selecting and treating patients. Current
AD diagnostic guidelines include tests that detect the
presence of brain amyloid-β (Aβ) plaques using either
amyloid PET imaging or low cerebrospinal fluid (CSF)
Aβ42 levels or Aβ42/40 ratio; biomarkers for dysregu-
lated Aβ metabolism and plaque formation [4–10].
Although amyloid PET imaging and CSF biomarkers
have significantly improved the detection of brain amyl-
oidosis, there is still a critical need for safe, lower cost,
less resource-intensive, broadly available, blood-based
biomarkers that identify the presence or absence of brain
amyloid plaques. Herein, we describe the first generation
of a Mass Spectrometry (MS)-based blood test that
addresses this critical need.
Substantial effort and resources have been devoted to

quantifying blood biomarkers (e.g., Aβ42, Aβ40) as
potential proxies for brain amyloid plaques [11–24].
Using traditional enzyme-linked immunoassay (ELISA)
technology, most prior studies found poor concordance
between blood Aβ concentrations and either brain amyl-
oid status or AD [25]. Recently, mass spectrometry-
based technologies have gained traction as highly sensi-
tive and specific methods for quantifying Aβ isoforms in
CSF and blood samples [17, 20, 21, 26–31]. These stud-
ies found that low plasma Aβ42/40 concentration ratios
(or high plasma Aβ40/42 concentration ratios [21]) are
associated with the presence of brain amyloid plaques.
Interestingly, a low plasma Aβ42/40 ratio identified the
presence of brain amyloid plaques prior to the onset of a
positive amyloid PET scan [17]. During the research and

development process, we designed a streamlined, high
throughput, liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analytical platform that quantifies
plasma Aβ40 and Aβ42 levels and identifies plasma
Apolipoprotein E (ApoE) isoform-specific peptides.
To establish proof-of-principle, we tested the robust-

ness, clinical accuracy, and commercial viability of this
novel LC-MS/MS assay by evaluating concordance
between LC-MS/MS-based measures of plasma Aβ42/40
concentration ratio, ApoE phenotype, and the presence
or absence of brain amyloidosis determined using CSF
and amyloid PET imaging biomarkers among partici-
pants enrolled by multiple memory clinics and academic
research centers across the US.

Methods
Participants and samples
We obtained random, banked plasma samples collected
from six independent cohorts that were collected from
participants enrolled in site-specific clinical studies,
where brain amyloid status (positive, negative, SUVR)
was determined using either amyloid PET imaging or
CSF biomarker analysis (Table 1). Plasma samples were
collected, and brain amyloid status was determined
using site-specific, but diverse methods and protocols. In
this retrospective sample analysis, control of pre-
analytical conditions during blood sample collection and
processing was not possible. For example, five of the six
sites provided plasma from blood collected in K2 EDTA
tubes, and one site (cohort 2) used lithium heparin
tubes. Other than the collection tube, blood sample pro-
cessing procedures were similar among the different
sites. Briefly, blood samples were centrifuged at room
temperature or 4 °C within 30–60 min of phlebotomy.
Plasma was aliquoted (0.5–1.0 mL) into polypropylene
tubes and frozen at − 70 to − 80 °C within 2 h of phlebot-
omy. All samples were deidentified, shipped on dry ice
to C2N, and analyzed in a blinded manner. Some sites
obtained brain amyloid PET status using Pittsburgh
compound B (PiB) while other sites used FDA-approved
amyloid tracers (Amyvid, NeuraCeq); and some sites
used CSF Aβ42/40 concentration ratios, different quanti-
fication methods (ELISA, MS), and different cutoff
values to assign amyloid positivity or negativity. Most
but not all sites provided the same demographic and
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phenotype data for their cohorts (Table 1). Sites are
referred to as cohort 1–6. A total of 414 participants’
plasma samples were received, prepared and analyzed
using the following sample preparation and liquid
chromatography-mass spectrometry methods.

Plasma Aβ calibrators and internal standard preparation
Amino acid analysis (AAA) was performed on full length
14N- and uniformly labeled 15N-Aβ40 and 15N-Aβ42
proteins (rPeptide, Watkinsville, GA) to confirm their
chemical purity and the amount of each to be used when
preparing calibrator stock solutions. Calibrators were
prepared by spiking known incremental amounts of
recombinant 14N-Aβ40 and 14N-Aβ42 into 2% (w/v)
recombinant human serum albumin (HSA) in phosphate

buffered saline (PBS) that contained a known amount of
15N-Aβ40 and 15N-Aβ42 proteins. Seven calibrator con-
centrations were prepared based on the expected physio-
logical range for plasma Aβ proteins: Aβ40 = 24.3–1558
pg/mL; Aβ42 = 3.6–235 pg/mL. A matrix blank prepared
from 2% HSA was also included in every analysis.
All participant plasma samples, calibrators, and quality

control samples were treated identically throughout
sample processing and analysis. To each 450 μL plasma
sample, 9 μL of 2.5% (w/v) Tween-20, 23 μL of PBS,
45 μL of 5M guanidine, and 10 μL of protease inhibitors
were added. Final concentrations of full-length 15N
internal standard proteins were 200 pg/mL and 30 pg/
mL for Aβ40 and Aβ42, respectively. After the addition
of immunoprecipitation buffers, 40 μL of a slurry

Table 1 Cohort demographics and plasma biomarker values

Cohort 1
(N = 37)

Cohort 2
(N = 94)

Cohort 3
(N = 121)

Cohort 4
(N = 26)

Cohort 5
(N = 96)

Cohort 6
(N = 40)

All Cohorts
(N = 414)

Age

Mean (SD) 73.1 (7.8) 71.1 (8.0) 66.1 (7.8) 75.1 (6.8) 71.4 (7.6) 69.7 (9.1) 70.0 (8.3)

Min 59.2 56.7 47.0 66.1 45.0 46.1 45.0

Max 87.5 93.1 85.0 88.9 89.0 86.0 93.1

Sex

Male (%) 54.1% 58.5% 23.1% 57.7% 40.6% 35% 41.3%

Amyloid Positive (%) 49% 46% 17% 42% 49% 52% 39%

CDR

Percent CDR = 0 [N] - [0] 50% [94] - [0] 56% [25] - [0] 75% [40] 57.2% [159]

MMSE

Percent MMSE = 27–30 [N] 45.9% [37] - [0] 100% [121] 64% [25] - [0] 85% [40] 84.3% [223]

Biomarker Used to Determine Brain Amyloid Status (% participants)

PiB – – 68% 54% – 52% 28%

Amyvid – – 32% – 22% 48% 19%

Neuraceq – – – – 78% – 18%

CSF ELISA – 100% – – – – 23%

CSF IPMS 100% – – 46% – – 12%

ApoE Proteotype

E2/E3 (%) 5.4% 8.5% 5.0% 23.1% 7.3% 7.5% 7.7%

E2/E4 (%) 2.7% 6.4% – – 2.1% 5.0% 2.7%

E3/E3 (%) 51.4% 46.8% 47.9% 46.2% 52.1% 45.0% 48.6%

E3/E4 (%) 29.7% 28.7% 29.8% 19.2% 34.4% 35.0% 30.4%

E4/E4 (%) 10.8% 9.6% 17.4% 11.5% 4.2% 7.5% 10.6%

C2N Plasma Aβ42/40

Mean (SD) 0.089 (0.012) 0.102 (0.010) 0.101 (0.009) 0.096 (0.009) 0.087 (0.009) 0.100 (0.009) 0.097 (0.011)

Min 0.065 0.084 0.080 0.082 0.059 0.080 0.059

Max 0.113 0.148 0.126 0.114 0.113 0.117 0.148

No patients had the E2/E2 genotype. Cohort 2 used Heparin tubes whereas all other cohorts used EDTA tubes for blood collection. [N] is the number of
participants where data was available/provided
CSF cerebrospinal fluid, ELISA enzyme-linked immunoassay, IPMS immunoprecipitation-mass spectrometry, CDR Clinical Dementia Rating, MMSE Mini-Mental
State examination
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containing monoclonal anti-Aβ13–28 antibody (HJ5.1)
conjugated to magnetic beads (Dynabeads M-270 Epoxy,
Thermo-Fisher) was added to each sample and incu-
bated at room temperature for 90 min. After incubation,
the magnetic beads were washed with PBS and triethy-
lammonium bicarbonate (TEABC) to remove non-
specific binding contaminants prior to sample digestion.
Bound amyloid proteins were digested at 37 °C in 100 μL
of TEABC containing 0.94 ng/μL lysN metalloprotease
(MS Grade, Pierce Biotechnology, Rockford, IL). After
120 min, the reaction was quenched by the addition of
2% formic acid. The acidified digests were further
cleared using reverse-phase solid phase extraction (SPE)
and washed with 20% MeOH/1% formic acid. The Aβ
species were eluted from the SPE plate by the addition
of 55% ACN/1% formic acid, dried under vacuum, and
stored (− 80 °C) until analysis.

Plasma Aβ quantification using LC-MS/MS
The dried Aβ peptide digests were reconstituted in
16 μL of 10% ACN/10% formic acid. Three μL of the
sample were injected onto a monolithic divinylbenzene
column (Thermo Fisher Scientific) and separated using a
Waters Acquity M-class UPLC (Waters Corporation,
Milford, MA). The Aβ peptides were resolved using a
linear gradient of 99.9% water/0.1% formic acid and
99.9% acetonitrile/0.1% formic acid over 6 min. The Aβ
peptides were detected using a Thermo Scientific Fusion
Lumos Tribrid MS (Thermo Fisher Scientific, Waltham,
MA). For the targeted analytes, precursor and product
ions were detected using parallel reaction monitoring
(PRM). Precursor ions were filtered by quadrupole isola-
tion of 1.6 m/z and detected within the orbitrap at a
mass resolution of 30,000. Automatic gain control
(AGC) targets for Aβ40 and Aβ42 were set at 1.0e5 and
5.0e5, respectively. Maximum injection times for all Aβ
species was set at 75 msec.

Aβ isoform quantification
Calibration curves for both Aβ40 and Aβ42 were created
by dividing the integrated peak area for each targeted
14N-peptide over the integrated peak area for the corre-
sponding 15N-peptide, and the measured 14N/15N ratio
for each (n = 7) calibrator’s known Aβ40 and Aβ42 pep-
tide concentration were plotted. Linear regression
analysis (1/x weighting) was used to determine the cor-
relation coefficient (r2 > 0.995), slope and intercept for
each calibration curve. Acceptance criteria were estab-
lished for calibration curve metrics, chromatographic
peak retention time, symmetry, intensity, and peptide
ion ratios (details provided in Supplementary Informa-
tion); these were assessed in each sample batch using
TraceFinder 4.1 General Quan software (Thermo Fisher
Scientific, Waltham, MA). Plasma Aβ40 and Aβ42

concentrations in participant samples and quality
control samples were calculated by comparing each sam-
ple’s 14N/15N ratio for Aβ40 and Aβ42 peptides to their
respective calibration curves. Ion ratios for the partici-
pant samples and quality control samples were within ±
20% of the average ion ratios for the seven calibrators.
Quality control plasma samples with known Aβ42 and
Aβ40 concentrations and Aβ42/40 ratios were analyzed
in each batch and were required to pass multi-rule
acceptance criteria for their assigned values. For the
quality control samples, a 1–3 s rule was implemented
where a batch would fail if Aβ40, Aβ42, or Aβ42/40
exceeded the nominal concentration by ±3SD.

Plasma ApoE qualitative assay internal standard peptides
Stable isotope labeled ApoE internal standard (ISTD)
peptides corresponding to the four tryptic ApoE peptide
sequences (CLAVYQAGAR, LAVYQAGAR, LGADME
DVCGR, and LGADMEDVR) that distinguish among
the six ApoE genotypes were synthesized with uniformly
labeled 13C,15N-arginine at the C-terminus (Vivitide,
Gardner, MA).

Plasma ApoE sample preparation
Plasma samples were prepared using a method modified
from van den Broek et al. [32]. Briefly, plasma (5 μL) was
diluted into 95 μL 100mM Tris pH 8.1, 9.6 mM sodium
deoxycholate (SDC), 2.3 mM tris(2-carboxyethyl) phos-
phine (TCEP)). Eight μL of diluted sample were added
to 40 μL of 100 mM Tris pH 8.1, 9.6 mM SDC, 2.3 mM
TCEP, 10 fmol ISTD peptides/μL. Samples were dena-
tured by incubation at 50 °C with shaking. Proteins were
alkylated by the addition of 20 μL of 4.8 mM iodoaceta-
mide and incubated at room temperature, in the dark,
with shaking. Proteins were digested by the addition of
24 μL of 0.06 μg/μLmM trypsin (Gold, MS Grade; Pro-
mega Corporation, Madison, WI) and incubated at 50 °C
with shaking. After digestion, samples were acidified
with the addition of 7 μL of 35.7% formic acid/71.4 mM
heptafluorobutyric acid (HFBA) to precipitate the SDC.
Samples were centrifuged at room temperature to pellet
the SDC, and further cleaned using SPE. The samples
were dried under vacuum and stored (− 80 °C) until LC-
MS/MS analysis.

ApoE peptide analysis and identification using LC-MS/MS
The dried ApoE peptide digests were reconstituted, 3 μL
of the sample was injected onto a CSH C18 column and
were separated using a Waters Acquity M-class UPLC.
The ApoE peptides were resolved using a linear gradient
of 99.9% water/0.1% formic acid and 99.9% acetonitrile/
0.1% formic acid over 4 min. The Aβ peptides were de-
tected using a Thermo Scientific Fusion Lumos Tribrid
MS (Thermo Fisher Scientific, Waltham, MA). For the
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targeted analytes, precursor and product ions were
detected using parallel reaction monitoring (PRM). Pre-
cursor ions were filtered using a quadrupole isolation
window of 1.6 m/z. Product ions were detected within
the orbitrap at a mass resolution of 30,000 and the AGC
target was set to 5.0 × 105.

ApoE Proteotyping
ApoE proteotyping for each of the six ApoE genotypes
(ε2/2, ε2/3, ε2/4, ε3/3, ε3/4, ε4/4) used a combination of
the presence or absence of the four targeted ApoE
isoform-specific tryptic peptides. The presence or ab-
sence of an ApoE isoform-specific peptide was deter-
mined by inspecting ratio dot product (rdotp) scores
provided by Skyline between the measured transitions
for the endogenous and corresponding ISTD peptides
[33]. A high rdotp value was used to confirm the ApoE
peptide identity in the sample rather than solely relying
on limits of detection for the measurands as the thresh-
old for determining presence or absence in a sample.
Rdotp values range from 0 to 1, with a score of 0 repre-
senting the least amount of endogenous ApoE isoform-
specific peptide agreement with the corresponding in-
ternal standard peptide and 1 being identical agreement.
ApoE peptides with rdotp values greater than or equal
to 0.99 were considered present and those with rdotp
values less than 0.99 were considered absent. ApoE pro-
teotype was determined using the presence/absence of
ApoE isoform-specific peptides as outlined in the
Supplementary Information. An in-house R script was
utilized to generate the ApoE proteotypes based upon
the input peak areas (or their absence) for each isoform-
specific peptide.

Statistical analysis
All data were analyzed using R version 4.0.0 (The R
Foundation for Statistical Computing, https://www.r-
project.org/). Receiver operating characteristic (ROC),
sensitivity, and specificity were calculated using the
pROC package for R and optimal cut off values for
plasma Aβ42/40 ratio and model parameters were deter-
mined by Youden index (maximized sensitivity and spe-
cificity of the predictive test) [34]. ROC curve 95%
confidence intervals (CI) and comparisons between
ROCs were calculated using the DeLong method [35].
Comparisons between groups with only two outcomes

were performed using an unpaired two-sided t-test.
Comparisons between groups with more than two out-
comes were performed using a one-way ANOVA
followed by Tukey multiple pairwise-comparisons be-
tween the group means. Fisher’s Exact test was used to
compare demographic variables (e.g., % women vs. men)
between amyloid positive vs. negative groups.

Binary logistic regression models were used to account
for cohort heterogeneity across the different banked
sample sets, as well as ApoE proteotype, and age as vari-
ables for predicting amyloid positivity. Logistic regres-
sion models used amyloid positivity as the dependent
variable and the cohort, plasma Aβ42/40 ratio, ApoE
proteotype, and age as independent variables. ApoE pro-
teotype was included as a dummy variable indicating the
number of ApoE4 alleles as either zero, one or two, to
allow for non-linear influence of two copies vs. one copy
of ApoE4.

Results
Cohort demographics
As expected, each cohort included a different number of
participants (n = 26–121) with differing distributions by
sex (23–58% male), age (45–93 years), prevalence of
brain amyloid positivity (17–52%), ApoE4 status (19–
35% E4 heterozygotes; 4–17% homozygotes), and plasma
Aβ42/40 ratios (0.059–0.148; Table 1). Clinical diagnosis
was only available for cohort 2, and in this cohort clin-
ical diagnosis aligned with the CDR scores, with around
54% classified as normal, and the remaining receiving a
diagnosis of either dementia-AD or MCI-AD. For all but
one cohort either MMSE or CDR scores were available
(Table 1). Cohorts 1, 2, and 4 were evenly balanced, with
around 50% having either CDR or MMSE scores in the
normal range, whereas cohorts 3 and 6 had a majority of
clinically normal participants.
Brain amyloid status was defined using site-specific

methods and cutoff values for determining CSF Aβ42/40
ratio or amyloid PET positive or negative, further break-
down of the demographics for the 6 cohorts by amyloid
status can be found in Supplementary Information.
These methods varied between and within cohorts and
included differences in imaging agent and methods for
evaluating images. Using these site-dependent criteria,
161 (39%) of the 414 participants were classified as brain
amyloid positive.
Likewise, site-specific procedures were used to collect

and process blood, aliquot and store plasma samples,
and these varied among the cohorts. Pre-analytical sam-
ple handling conditions affect plasma Aβ42 and Aβ40
concentrations [36], but these conditions could not be
controlled in this retrospective sample analysis. These
heterogeneous conditions allowed us to test the robust-
ness and analytical viability of the sample preparation
methods and the LC-MS/MS assay developed, and the
practical applicability of the findings among diverse sites,
participants, and samples collected under real-world,
non-optimal conditions.
After analysis, all plasma Aβ42, Aβ40, Aβ42/40 ratio

and ApoE proteotype data were secured, sites shared the
corresponding demographic and phenotypic data for
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statistical analysis with the plasma biomarker data. Ini-
tially, the plasma biomarker values were compared be-
tween the brain amyloid positive and negative
participants as defined by the site-specific method
(Table 2). Overall, the amyloid positive group was older
(74 vs. 68 yr; p < 0.0001), had fewer women (51% vs.

60%; p = 0.01), fewer participants with CDR = 0 (32% vs
80%; p < 0.0001), fewer participants with normal MMSE
of 27–30 (61% vs. 95%; p < 0.0001), and more ApoE4
heterozygotes (51% vs. 22%) and homozygotes (17% vs.
7%) than the amyloid negative group. Hispanic/Latino
representation (24% vs. 22%; p = 0.57) and years of edu-
cation (16 vs. 16 yr; p = 0.41) were not significantly dif-
ferent between the groups. A previous study reported
lower CSF biomarker levels among African American
ApoE4 carriers than non-Hispanic White ApoE4 carriers
[37]. Information about race was available from 4 out of
the 6 cohorts (missing from cohort 4 and 5). From this
it is clear that the overall racial diversity in the cohorts
was low, with an overall preponderance of white re-
search participants.

Plasma amyloid isoform concentrations
The sample preparation methods and LC-MS/MS ana-
lytical platform developed were sensitive and specific for
quantifying plasma Aβ40 and Aβ42 concentrations. The
limit of detection (LOD) was 11 pg/mL for Aβ40 and 3
pg/mL for Aβ42. The specificity derives from the ability
of tandem mass spectrometry to detect the amino acid
sequence for each targeted peptide and fragment ions
based on their mass-to-charge ratios. The LC-MS/MS
assay has undergone extensive analytical validation to
ensure consistent performance over a wide range of Aβ
peptide concentrations and all ApoE genotypes (manu-
script under review).
The plasma Aβ42 and Aβ40 concentrations were

expressed as a concentration ratio (Aβ42/40). As is the
case for CSF, this ratio is a better predictor of the pres-
ence of brain amyloid than just the plasma Aβ42 con-
centration, and a lower plasma Aβ42/40 ratio has been
associated with amyloidosis [17, 21]. Overall, plasma
Aβ42/40 was 11.4% lower in the amyloid positive than
in the amyloid negative group (p = 2.6 × 10− 26) (Fig. 1a).
By performing ROC analysis, the plasma Aβ42/40 cutoff
value that maximized sensitivity and specificity (Youden
index) was found to be 0.0975 (dashed line in Fig. 1a).
The area under the ROC curve (AUC-ROC) was 0.81
(95% CI = 0.77–0.85, Fig. 1e, red line) and the overall
percent accuracy between the plasma Aβ42/40 ratio and
amyloid positivity was 75% at this cutoff value.
Plotting the plasma Aβ42/40 ratios by cohort shows

how cohort-specific differences for defining amyloid
positivity, and differences in blood collection and storage
protocols affected the measured plasma Aβ42/40 ratios
(Fig. 1b). Across all cohorts, the plasma Aβ42/40 ratio
was consistently lower in the amyloid positive than the
amyloid negative participants, but the optimal plasma
Aβ42/40 cutoff value appeared to differ slightly among
cohorts. A logistic regression model was constructed
using plasma Aβ42/40 ratio and cohort as variables to

Table 2 Participant characteristics separated by brain amyloid
status

Amyloid Negative
(N = 253)

Amyloid Positive
(N = 161)

Age (P < 0.0001)

Mean (SD) [N] 67.7 (8.1) [253] 73.6 (7.4) [161]

Sex (P = 0.0139)

Female [N] 63.6% [253] 50.9% [161]

Ethnicity (P = 0.5734)

Hispanic [N] 21.7% [198] 24.5% [110]

Race

White 176 97

Black or African American 8 5

Asian 2 0

American Indian or Alaska
Native

1 1

Education (P = 0.4080)

Mean years (SD) [N] 16.3 (2.4) [170] 16.1 (2.5) [85]

ApoE4 distribution within subgroup

No E4 [N] 71.5% [181] 32.3% [52]

One E4 [N] 21.7% [55] 50.9% [82]

Two E4 [N] 6.7% [17] 16.8% [27]

CDR (P < 0.0001)

Percent CDR = 0 [N] 79.8% [84] 32% [75]

MMSE (P < 0.0001)

Percent MMSE = 27–30 [N] 95.4% [152] 60.6% [71]

mean (sd) 29.4 (1.6) 26.2 (4.5)

Abeta42/40 (P < 0.0001)

mean (sd) 0.101 (0.010) 0.090 (0.010)

min 0.072 0.059

max 0.126 0.148

Abeta42 (pg/mL) (P < 0.0001)

mean (sd) 44.477 (8.637) 40.421 (9.698)

min 10.984 23.985

max 82.494 103.882

Abeta40 (pg/mL) (P = 0.22)

mean (sd) 440.435 (81.870) 452.325 (103.933)

min 134.985 270.455

max 893.672 1219.238

N Number of total observations - not all demographic data were available
from each cohort, so [N] is the number of participants where data
was available/provided

West et al. Molecular Neurodegeneration           (2021) 16:30 Page 6 of 12



a b

c e

d f

Fig. 1 Diagnostic Performance Plots, Metrics, and Prediction Parameters for Plasma Biomarkers Measured Using LC-MS/MS. a Plasma Aβ42/40
concentration ratios were lower in amyloid positive than negative participants (n = 414). Scatter-Box-Whisker plot of plasma Aβ42/40 for participants
classified as brain amyloid negative or positive. Optimal plasma Aβ42/40 cutoff value (0.0975) = dashed horizontal line; Median = dark horizontal lines; 25th
to 75th quartiles = Box; 95% Confidence Interval =Whisker. b In each cohort, plasma Aβ42/40 ratios were consistently lower in amyloid positive than
negative participants. Plasma Aβ42/40 ratios separated by brain amyloid status (Blue =Negative; Red = Positive) for each cohort. Dashed horizontal line is
the optimal plasma Aβ42/40 cutoff value (0.0975) based on ratio alone (same as dashed line in a). c Amyloid probability scores were higher in amyloid
positive than negative participants. A logistic regression model using plasma Aβ42/40 and cohort to generate a model probability score that predicted
brain amyloid status. Scatter-Box-Whisker plots of individual probability scores (0.0–1.0) separated by amyloid status. Optimal model-derived probability
score that differentiated amyloid positive from negative (0.42) = dashed horizontal line. d Amyloid probability scores derived from a logistic regression
model that used plasma Aβ42/40, number of ApoE4 alleles, age and cohort to predict brain amyloid status. Scatter-Box-Whisker plots of individual amyloid
probability scores (0.0–1.0) separated by amyloid status. e Receiver Operating Characteristic curves (ROC) plotted using: participants’ plasma Aβ42/40 ratio,
ApoE4, age, and cohort (gold plot; AUC-ROC = 0.90 and 95% CI shown in insert); plasma Aβ42/40 and cohort (blue plot; AUC-ROC = 0.86); and only plasma
Aβ42/40 (red plot; AUC-ROC = 0.81). For comparison, the insert also shows AUC-ROC and 95% CI for ApoE4 and age (0.82), and ApoE4, age and cohort
(0.84). f Four-quadrant plot illustrating the relationship between quantitative PiB SUVR values and plasma Aβ42/40 ratios and cutoff value (dashed vertical
line = 0.0975) for two cohorts (n = 103). Cohort 3 used PiB SUVR cutoff = 1.47 (Red (x) and dashed horizontal line), cohort 6 used 1.42 (Blue filled dots (•)
and dashed horizontal line). Three false negative plasma Aβ42/40 results in the upper right quadrant. Twenty false positive plasma Aβ42/40 results in the
lower left quadrant that may represent participants with elevated risk for converting to amyloid PET positive in the future
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adjust for the cohort differences and their performance
for predicting amyloid status independent of any global
cohort-specific differences in plasma Aβ42/40 ratios.
This logistic regression model provided an overall im-
provement in AUC-ROC to 0.86 (95% CI = 0.82–0.90,
Fig. 1e, blue line) and accuracy to 81%. The logistic re-
gression model generated a probability score (0.0–1.0)
for predicting brain amyloid status for each participant;
low probability scores predicted a negative amyloid sta-
tus while high probability scores predicted a positive
amyloid status (Fig. 1c). The ROC curve analysis used to
calculate model performance generated an optimal
(Youden) probability score cutoff of 0.42 (dashed line in
Fig. 1c), and the mean probability score was higher
among amyloid positive than negative participants (p =
1.8 × 10− 43). The model that accounted for cohort differ-
ences in plasma sample collection and processing proce-
dures, along with plasma Aβ42/40 concentration ratios,
provided an improvement in overall predictive value for
the presence or absence of brain amyloidosis. The AUC-
ROC analysis for the model that used plasma Aβ42/40
alone (0.81) was significantly lower (p = 0.00031) than
the AUC-ROC analysis that used plasma Aβ42/40 ratio
and cohort (0.86).

Inclusion of ApoE and age improves diagnostic
performance
ApoE genotype and participant age are established risk
factors for Alzheimer’s disease and brain amyloidosis [1].
Along with plasma Aβ40 and Aβ42 quantitation, we de-
veloped sample preparation procedures and LC-MS/MS
detection methods that identified plasma ApoE isoform-
specific peptides expressed by ApoE genes. We refer to
this as plasma ApoE proteotyping or phenotyping. The
method requires 5 μL plasma and no genetic material.
ApoE proteotyping successfully confirmed all partici-
pants’ ApoE genotypes as provided in the demographic
data from the various cohorts (Table 1).
We examined whether adding participant age and

ApoE proteotype offered further improvements to the
performance of the logistic regression model’s probabil-
ity score for predicting brain amyloid status. Age was
added to the logistic regression model as a continuous
variable, and the number of ApoE4 alleles was added as
a non-linear variable. Adding these factors to the logistic
regression model improved the separation in probabil-
ity scores between brain amyloid positive and negative
(p = 3.2 × 10− 55; Fig. 1d) without dramatically altering
the optimal cutoff value (0.44), significantly increased
(p = 0.0010) the AUC-ROC to 0.90 (95% CI = 0.87–
0.93: Fig. 1e, gold line) and the overall accuracy to
86%. There was no significant difference in perform-
ance of this model between the 6 different cohorts
(p = 0.47 for Fisher test on accuracy data). For

comparison, the AUC-ROC for just age and ApoE4
copy number was only 0.82, and AUC-ROC for age,
cohort, and ApoE4 copy number (excluding plasma
Aβ42/40 ratio) was 0.84 (Insert in Fig. 1e).

Plasma Aβ42/40 concentration compared to SUVR
Of the 414 participants, 251 had quantitative amyloid
PET SUVR measures. The SUVR data were collected
using 3 different tracers: PiB (Pittsburgh Compound B),
Amyvid (Florbetapir), or NeuraCeq (Florbetaben) at
multiple clinical sites using different scanners, modal-
ities, and non-standardized acquisition parameters
(Table 1). While the SUVR values cannot be directly
compared among the tracers and sites, when the SUVR
values were plotted against their corresponding plasma
Aβ42/40 ratios, there was a grouping of SUVR values
below the SUVR cutoffs for participants who were amyl-
oid negative by the blood test, while for participants who
were positive by the blood test, the SUVR values were
either above or below the SUVR cutoff value. This is il-
lustrated in Fig. 1f for PiB (n = 103), but similar patterns
were observed for the other PET tracers. Quantitative
PiB SUVR values were available from cohorts 3 and 6.
But, each cohort used slightly different SUVR cutoff
values to define amyloid positive and amyloid negative
participants (1.47 for cohort 3 and 1.42 for cohort 6), so
the data points from the two cohorts are shown as red
and blue with color matching horizontal lines denoting
the cutoff value for each cohort (Fig. 1f). This plot shows
that there are three participants with SUVR values above
background uptake who had plasma Aβ42/40 ratios
above the cutoff value (false negative by the plasma
Aβ42/40 ratio measures). However, 20 participants with
SUVR values in the normal range were predicted to be
amyloid positive by the plasma Aβ42/40 ratio measures
(false positives). This is consistent with what has been
observed with CSF Aβ42/40 assays and could suggest
that the Aβ42/40 ratio can detect biochemical changes
prior to brain amyloid accumulating to the level required
for detection by PET imaging.

Discussion
The findings indicate that the plasma sample prepar-
ation and LC-MS/MS analytical methods developed for
our blood biomarker assay are robust, analytically viable,
practically applicable, and resilient to the potential vari-
ability introduced when plasma samples are collected
using non-standardized procedures from participants
under real-world conditions. The findings provide proof-
of-principle; this LC-MS/MS method has strong diag-
nostic performance and accurately (AUC-ROC 0.81–
0.90) distinguished brain amyloid positive from amyloid
negative individuals, even when various imaging and
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CSF fluid biomarker platforms were used as reference
standards to determine brain amyloid status.
The diagnostic performance metrics are excellent, con-

sidering: i) several different sites provided plasma sam-
ples and phenotypic data; ii) the diverse and
heterogeneous participant demographics; iii) the differ-
ence in methodologies used to identify brain amyloid
status; iv) the different methods, definitions, and cutoff
values sites used to distinguish brain amyloid positive
from negative; and v) the non-standardized site-specific
procedures used to collect blood, isolate, aliquot, freeze
and store the plasma samples prior to Aβ- and ApoE-
isoform specific peptide analysis. Despite these uncon-
trolled factors, the sample preparation procedure and
LC-MS/MS method performed remarkably well. This
warrants further investigation to qualify, verify, and val-
idate the analytical and clinical performance parameters
in larger cohorts using controlled, consistent protocols
and procedures. Such analytical and clinical validation
studies are in progress by our group, and planned for
regulatory review and clearance (e.g., US FDA, College
of American Pathologists).
The findings also indicate that plasma Aβ42/40 con-

centration ratio determined using the LC-MS/MS assay
developed can accurately identify brain amyloid status,
and that including additional risk factors for amyloid
pathology in the model (age, ApoE4 copy number) im-
proved the AUC-ROC and model accuracy. This is con-
sistent with what has been observed by other groups and
is based on established relationships among advanced
age, number of ApoE4 alleles and amyloid pathology
[17, 23, 38]. It is important to note that the plasma
Aβ42/40 ratio combined with ApoE and age improved
the accuracy for identifying amyloid positivity as com-
pared to just ApoE and age alone. The AUC-ROC for
plasma Aβ42/40 ratio and cohort was 0.86 while the
AUC-ROC for ApoE, age, and cohort was 0.84, but
when plasma Aβ42/40 ratio, ApoE, age, and cohort were
combined into a single model, the AUC-ROC improved
to 0.90. This suggests that the risk/susceptibility infor-
mation provided by the ApoE genotype and age is addi-
tive to the biochemical information provided by the
plasma Aβ42/40 ratio. At an AUC-ROC of 0.90, the ac-
curacy of the plasma test approaches the upper limit of
accuracy for the diverse methods used to determine
amyloid status in these cohorts. It is also notable that
this LC-MS/MS analytical platform adds efficiency and
value to the prediction algorithm by identifying the
plasma ApoE proteotype in the same plasma sample.
This eliminates the need for a separate blood collection
for traditional ApoE genotyping procedures.
Similar to other studies that tested concordance be-

tween CSF or plasma Aβ42/40 ratio against amyloid
PET status, the current plasma biomarker analyses

yielded a greater number of false positive than false
negative findings (Fig. 1f), i.e., there were more individ-
uals with a positive plasma biomarker result who had a
negative amyloid PET scan than the reverse situation
[17, 20, 23]. This is consistent with preliminary findings
from a longitudinal study where amyloid PET negative
individuals with a low plasma Aβ42/40 ratio had a 15-
fold greater risk of converting to amyloid PET positive
within 4 years when compared to individuals with a high
plasma Aβ42/40 ratio [17]. As suggested, a low plasma
Aβ42/40 ratio may identify individuals who will convert
from amyloid PET negative to positive in the near future
[17], but additional longitudinal evidence is required.
These observations suggest that the plasma Aβ42/40

ratio declines before brain amyloid accumulates to a
level that can be detected by currently available PET
tracers, and that fluid biomarkers and amyloid PET
SUVR reflect different aspects/stages of amyloid path-
ology. Fluid biomarkers might provide an earlier indica-
tion of changes in Aβ42 (and other soluble
neuroproteins) production and clearance rates, while
amyloid PET SUVR reflects the consequence of these
kinetic changes in the form of accumulation of neuritic
amyloid plaques that take many years to evolve. Large
longitudinal studies are needed to better elucidate the
relationships among changes in CSF and plasma Aβ42/
20 ratio, and amyloid PET SUVR values.
The use of banked samples from multiple diverse co-

horts provides proof-of-principle for the analytical ro-
bustness of the LC-MS/MS assay. However, the lack of
consistent enrollment criteria, sample collection
methods, and amyloid status definitions are limitations
as these factors may have introduced a sample selection
bias, and they do not allow cohort-independent cutoff
values to be established for plasma Aβ42/40 ratio or
amyloid probability score. The Plasma test for Amyloid
Risk Screening (PARIS) study, a C2N sponsored pro-
spective and controlled study, enrolled patients with
amyloid PET imaging obtained as part of the IDEAS
(Imaging Dementia Evidence for Amyloid Scanning)
study [39], was recently completed and tested concord-
ance between plasma Aβ42/40, ApoE, age and amyloid
PET status (central read) in patients who met the IDEAS
inclusion criteria (NCT02420756). The first phase of the
PARIS study established cutoff values (manuscript in
preparation) for the now available PrecivityAD™ CLIA
test (C2N Diagnostics, St. Louis, MO).
The lack of consistent enrollment criteria among the

six cohorts may also have contributed to the unusually
good performance of the model that included only
ApoE4 copy number and age to predict amyloid status.
This model had an AUC-ROC of 0.84 when cohort was
included, whereas such models normally have AUC-
ROCs in the 0.75–0.80 range [23, 24]. However, when
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plasma Aβ42/40 ratio was included in this model, the
model performance (AUC-ROC) increased (Fig. 1e), sup-
porting the notion that the plasma Aβ42/40 ratio cap-
tures unique biological information that is additive to
the ApoE and age information.
Analytical validation metrics for this LC-MS/MS assay

that conformed to the standards of Clinical Laboratory
Improvement Amendments (CLIA) were presented at
the virtual 2020 CTAD meeting [40]. This, combined
with the clinical performance metrics presented (Fig. 1)
prompted C2N to complete the first phase of the PARIS
study, clinically validate (CLIA) the PrecivityAD™ test,
and release it for use in the clinic to aid clinicians evalu-
ating individuals experiencing early cognitive impair-
ment. Full analytical and clinical validation, according to
FDA’s in vitro diagnostic (IVD) regulations, are
underway.

Conclusions
The LC-MS/MS analytical platform and algorithm pre-
sented here constitute a test that can accurately identify
brain amyloid status based on a single blood sample.
Despite differences in how each cohort site collected
and stored plasma samples, and defined presence or ab-
sence of brain amyloid, the findings indicate that this
blood test and logistic regression model that incorpo-
rates plasma Aβ42/40, ApoE4 status, and patient age
had excellent performance; AUC-ROC = 0.90 when com-
pared to CSF or amyloid PET biomarkers. Brain PET
imaging or CSF biomarker analysis currently represent
the primary approaches used to identify AD pathological
changes in living individuals. However, amyloid PET is
resource-intensive, costly, and exposes individuals to un-
necessary radiation. The CSF biomarkers require inva-
sive sampling that deters many individuals from
undergoing such testing. There is an urgent need for
non-invasive and easily available diagnostic tools that
identify AD pathology. This blood-based test may be a
useful aid in the diagnosis of AD, therefore allowing for
improved medical decision making and management,
streamlined AD clinical trial enrollment, and better
identification of who may benefit from an AD specific
therapy.
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