Skip to content


  • Poster presentation
  • Open Access

Aneuploidy-driven non-heritable genomic variations demonstrate area-specific distribution in the Alzheimer’s disease brain

  • 1, 3,
  • 2, 4,
  • 5 and
  • 1, 4
Molecular Neurodegeneration20138 (Suppl 1) :P52

  • Published:


  • Prefrontal Cortex
  • Brain Area
  • Brain Disorder
  • Postnatal Life
  • Immunohistochemical Technique


Post-zygotic aneuploidy is the prominent genetic feature of the human brain (1). Genomically mosaic brain results from that the excess of aneuploid neurons due to early developmental disturbances (somatic genome variations), abnormal cell cycle regulation and altered programmed cell death. As the result, aneuploidization of the brain is a likely susceptibility factor (mechanism) for brain disorders including Alzheimer’s disease.

Materials and methods

The proportion of aneuploid cells was determined in brain areas differentially affected by neurodegeneration (prefrontal cortex, hippocampus and cerebellum) by molecular-cytogenetic and immunohistochemical techniques (interphase MFISH, immunoFISH) in brain tissues of individuals with AD and controls as described ealier (2).


Increased levels of aneuploidy (monosomy and trisomy) involving chromosome 21 and chromosome X was observed in AD brain. The high level of aneuploidy involving chromosome 21 was observed in the AD cerebrum and hippocampus. In total, the incidence of abnormal (aneuploid) neural cells was significantly higher in degenerating brain areas (hippocampus, prefrontal cortex) comparing to the less degenerating area (cerebellum).


Our data indicates that AD brain areas subjected to neurodegeneration are more significantly affected by aneuploidy (especially aneuploidy of chromosomes 21 and X). We propose that widespread postzygotic aneuploidization of selected brain areas is a mechanism for AD neurodegeneration. Such area-specific distribution of aneuploidy can be explained by the accumulation of aneuploid cells during postnatal life or abnormal selective pressure against non-aneuploid cells (3). Finally, these data provide for the speculation that acquired neural aneuploidy could be generated during both developing and adult neurogenesis/gliogenesis.



Supported by BMBF/DLR (BLR 11/002), the Russian Federation President Grant (MD-4401.2013.7), RFBR 12-04-00215-a.

Authors’ Affiliations

Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, Russia
Institute of Paediatrics and Paediatric Surgery, Ministry of Health, Moscow, Russia
Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow, Russia
Moscow City University of Psychology and Education, Moscow, Russia
Institute of Human Genetics, Jena, Germany


  1. lourov lY, Vorsanova SG, Yurov YB: Somatic genome variations in health and disease. Current Genomics. 2010, 11: 387-396. 10.2174/138920210793176065.View ArticleGoogle Scholar
  2. lourov lY, Vorsanova SG, Liehr T, Yurov YB: Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis. 2009, 34: 212-220. 10.1016/j.nbd.2009.01.003.View ArticleGoogle Scholar
  3. Yurov YB, Vorsanova SG, lourov lY: GIN’n’CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Molecular Cytogenetics. 2009, 2: 23-10.1186/1755-8166-2-23.PubMed CentralView ArticlePubMedGoogle Scholar


© lourov et al; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.