Lim DA, Huang YC, Alvarez-Buylla A: The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am. 2007, 18: 81-92.
PubMed
Google Scholar
Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH: Neurogenesis in the adult human hippocampus. Nat Med. 1998, 4: 1313-1317.
CAS
PubMed
Google Scholar
Gage FH: Mammalian neural stem cells. Science (80-). 2000, 287: 1433-1438.
CAS
Google Scholar
Garzón-Muvdi T, Quiñones-Hinojosa A: Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J. 2009, 51: 3-23.
PubMed
Google Scholar
Van den Driesche S, Sharpe RM, Saunders PTK, Mitchell RT: Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: A role for miRNAs?. Semin Cell Dev Biol. 2014, 29: 76-83.
CAS
PubMed
Google Scholar
Januschke J, Näthke I: Stem cell decisions: A twist of fate or a niche market?. Semin Cell Dev Biol. in press
Shihabuddin LS, Horner PJ, Ray J, Gage FH: Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci. 2000, 20: 8727-8735.
CAS
PubMed
Google Scholar
Battista D, Ferrari CC, Gage FH, Pitossi FJ: Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci. 2006, 23: 83-93.
PubMed
Google Scholar
Wurmser AE, Palmer TD, Gage FH: Cellular interactions in the stem cell niche. Science. 2004, 304: 1253-1255.
CAS
PubMed
Google Scholar
Palmer TD, Willhoite AR, Gage FH: Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000, 425: 479-494.
CAS
PubMed
Google Scholar
Mirshekar-Syahkal B, Fitch SR, Ottersbach K: From greenhouse to garden: The changing soil of the hematopoietic stem cell microenvironment during development. Stem Cells. in press
Ghiaur G, Yegnasubramanian S, Perkins B, Gucwa JL, Gerber JM, Jones RJ: Regulation of human hematopoietic stem cell self-renewal by the microenvironment’s control of retinoic acid signaling. Proc Natl Acad Sci U S A. 2013, 110: 16121-16126.
PubMed Central
CAS
PubMed
Google Scholar
Chen S, Lewallen M, Xie T: Adhesion in the stem cell niche: biological roles and regulation. Development. 2013, 140: 255-265.
PubMed Central
CAS
PubMed
Google Scholar
Oatley JM, Brinster RL: The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012, 92: 577-595.
PubMed Central
CAS
PubMed
Google Scholar
Zhao C, Deng W, Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell. 2008, 132: 645-660.
CAS
PubMed
Google Scholar
Ma DK, Marchetto MC, Guo JU, Ming G, Gage FH, Song H: Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci. 2010, 13: 1338-1344.
PubMed Central
CAS
PubMed
Google Scholar
Rotschafer JH, Hu S, Little M, Erickson M, Low WC, Cheeran MCJ: Modulation of neural stem/progenitor cell proliferation during experimental Herpes Simplex encephalitis is mediated by differential FGF-2 expression in the adult brain. Neurobiol Dis. 2013, 58: 144-155.
PubMed Central
CAS
PubMed
Google Scholar
Acosta S, Jernberg J, Sanberg CD, Sanberg PR, Small BJ, Gemma C, Bickford PC: NT-020, a natural therapeutic approach to optimize spatial memory performance and increase neural progenitor cell proliferation and decrease inflammation in the aged rat. Rejuvenation Res. 2010, 13: 581-588.
PubMed Central
CAS
PubMed
Google Scholar
Lazarov O, Marr RA: Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol. 2010, 223: 267-281.
PubMed Central
CAS
PubMed
Google Scholar
Ohab J, Fleming S: A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006, 26: 13007-13016.
CAS
PubMed
Google Scholar
Mu Y, Gage FH: Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener. 2011, 6: 85-
PubMed Central
PubMed
Google Scholar
Winner B, Kohl Z, Gage FH: Neurodegenerative disease and adult neurogenesis. Eur J Neurosci. 2011, 33: 1139-1151.
PubMed
Google Scholar
Kaneko N, Sawamoto K: Adult neurogenesis and its alteration under pathological conditions. Neurosci Res. 2009, 63: 155-164.
PubMed
Google Scholar
Ming G-L, Song H: Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011, 70: 687-702.
PubMed Central
CAS
PubMed
Google Scholar
Mu Y, Lee SW, Gage FH: Signaling in adult neurogenesis. Curr Opin Neurobiol. 2010, 20: 416-423.
PubMed Central
CAS
PubMed
Google Scholar
Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron. 2004, 41: 683-686.
CAS
PubMed
Google Scholar
Ma DK, Ming G-L, Song H: Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol. 2005, 15: 514-520.
CAS
PubMed
Google Scholar
Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999, 97: 703-716.
CAS
PubMed
Google Scholar
Lim DA, Alvarez-Buylla A: Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A. 1999, 96: 7526-7531.
PubMed Central
CAS
PubMed
Google Scholar
Kempermann G, Jessberger S, Steiner B, Kronenberg G: Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004, 27: 447-452.
CAS
PubMed
Google Scholar
Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, Behrens W, Von Der Kempermann G: Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci. 2003, 24: 603-613.
CAS
PubMed
Google Scholar
Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H: Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci. 2006, 32: 187-198.
CAS
PubMed
Google Scholar
Jablonska B, Aguirre A, Raymond M, Szabo G, Kitabatake Y, Sailor K a, Ming G-L, Song H, Gallo V: Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci. 2010, 13: 541-550.
PubMed Central
CAS
PubMed
Google Scholar
Shen Y, Mishra R, Mani S, Meiri , Karina F: Both cell-autonomous and cell non-autonomous functions of GAP-43 are required for normal patterning of the cerebellum in vivo. Cerebellum. 2008, 7: 451-466.
PubMed Central
CAS
PubMed
Google Scholar
Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004, 304: 1338-1340.
CAS
PubMed
Google Scholar
Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008, 3: 279-288.
CAS
PubMed
Google Scholar
Culver JC, Vadakkan TJ, Dickinson ME: A specialized microvascular domain in the mouse neural stem cell niche. PLoS One. 2013, 8: e53546-
PubMed Central
CAS
PubMed
Google Scholar
Goldberg JS, Hirschi KK: Diverse roles of the vasculature within the neural stem cell niche. Regen Med. 2009, 4: 879-897.
PubMed Central
PubMed
Google Scholar
Ramírez-Castillejo C, Sánchez-Sánchez F, Andreu-Agulló C, Ferrón S, Aroca-Aguilar J, Sánchez P, Mira H, Escribano J, Fariñas I: Pigment epithelium–derived factor is a niche signal for neural stem cell renewal. Nat Neurosci. 2006, 9: 331-339.
PubMed
Google Scholar
Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell-Badge R: Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci U S A. 2012, 109: 1317-1322.
PubMed Central
PubMed
Google Scholar
Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A: Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008, 3: 265-278.
PubMed Central
CAS
PubMed
Google Scholar
Doetsch F, Alvarez-Buylla A: Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A. 1996, 93: 14895-14900.
PubMed Central
CAS
PubMed
Google Scholar
Sanai N, Nguyen T, Ihrie R, Mirzadeh Z, Tsai H, Wong M, Gupta N, Berger M, Huang E, Garcia-Verdugo J, Rowitch D, Alvarez-Buylla A: Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011, 478: 382-386.
PubMed Central
CAS
PubMed
Google Scholar
Whitman MC, Fan W, Rela L, Rodriguez-Gil DJ, Greer CA: Blood vessels form a migratory scaffold in the rostral migratory stream. J Comp Neurol. 2009, 516: 94-104.
PubMed Central
PubMed
Google Scholar
Lacar B, Herman P, Hartman NW, Hyder F, Bordey A: S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone. PLoS One. 2012, 7: e31960-
PubMed Central
CAS
PubMed
Google Scholar
Miyamoto N, Tanaka R, Zhang N, Shimura H, Onodera M, Mochizuki H, Hattori N, Urabe T: Crucial role for Ser133-phosphorylated form of cyclic AMP-responsive element binding protein signaling in the differentiation and survival of neural progenitors under chronic cerebral hypoperfusion. Neuroscience. 2009, 162: 525-536.
CAS
PubMed
Google Scholar
Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010, 7: 483-495.
PubMed Central
CAS
PubMed
Google Scholar
Gebara E, Sultan S, Kocher-Braissant J, Toni N: Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. Front Neurosci. 2013, 7: 145-
PubMed Central
PubMed
Google Scholar
Mann JR: Epigenetics and memigenetics. Cell Mol Life Sci. 2014, 71: 1117-1122.
CAS
PubMed
Google Scholar
Bird A: Perceptions of epigenetics. Nature. 2007, 447: 396-398.
CAS
PubMed
Google Scholar
Hsieh J, Eisch AJ: Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol Dis. 2010, 39: 73-84.
PubMed Central
PubMed
Google Scholar
Handel AE, Ebers GC, Ramagopalan SV: Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med. 2010, 16: 7-16.
CAS
PubMed
Google Scholar
Hu X-L, Wang Y, Shen Q: Epigenetic control on cell fate choice in neural stem cells. Protein Cell. 2012, 3: 278-290.
CAS
PubMed
Google Scholar
Ariff IM, Mitra A, Basu A: Epigenetic regulation of self-renewal and fate determination in neural stem cells. J Neurosci Res. 2012, 90: 529-539.
Google Scholar
Chen T, Ueda Y, Dodge JE, Wang Z, Li E: Establishment and Maintenance of Genomic Methylation Patterns in Mouse Embryonic Stem Cells by Dnmt3a and Dnmt3b. Mol Cell Biol. 2003, 23: 5594-5605.
PubMed Central
CAS
PubMed
Google Scholar
Jones P a, Liang G: Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009, 10: 805-811.
PubMed Central
CAS
PubMed
Google Scholar
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird a P, Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000, 97: 5237-5242.
PubMed Central
CAS
PubMed
Google Scholar
Feil R, Fraga MF: Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2011, 13: 97-109.
Google Scholar
Lucassen PJ, Naninck EFG, van Goudoever JB, Fitzsimons C, Joels M, Korosi A: Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci. 2013, 36: 621-631.
CAS
PubMed
Google Scholar
Covic M, Karaca E, Lie DC: Epigenetic regulation of neurogenesis in the adult hippocampus. Heredity (Edinb). 2010, 105: 122-134.
CAS
Google Scholar
Singh R, Shiue K, Schomberg D, Zhou F: Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant. 2009, 18: 1197-1211.
PubMed Central
PubMed
Google Scholar
Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE: Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science (80- ). 2010, 329: 444-448.
CAS
Google Scholar
Chouliaras L, van den Hove DLA, Kenis G, Dela Cruz J, Lemmens MAM, van Os J, Steinbusch HWM, Schmitz C, Rutten BPF: Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav Immun. 2011, 25: 616-623.
CAS
PubMed
Google Scholar
Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee K-F, Gage FH: Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A. 2003, 100: 6777-6782.
PubMed Central
CAS
PubMed
Google Scholar
Li X, Barkho BZ, Luo Y, Smrt RD, Santistevan NJ, Liu C, Kuwabara T, Gage FH, Zhao X: Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem. 2008, 283: 27644-27652.
PubMed Central
CAS
PubMed
Google Scholar
Zheng W, Nowakowski RS, Vaccarino FM: Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci. 2004, 26: 181-196.
CAS
PubMed
Google Scholar
Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X: Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis. 2007, 27: 77-89.
PubMed Central
CAS
PubMed
Google Scholar
Kohyama J, Kojima T, Takatsuka E, Yamashita T, Namiki J, Hsieh J, Gage FH: Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. PLoS One. 2008, 105: 18012-18017.
CAS
Google Scholar
Tsujimura K, Abematsu M, Kohyama J, Namihira M, Nakashima K: Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp Neurol. 2009, 219: 104-111.
CAS
PubMed
Google Scholar
Ausió J, Paz AM D, Esteller M: MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med. in press
Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, Andrews R, Bird AP: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010, 37: 457-468.
PubMed Central
CAS
PubMed
Google Scholar
Bedogni F, Rossi RL, Galli F, Cobolli Gigli C, Gandaglia A, Kilstrup-Nielsen C, Landsberger N: Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci Biobehav Rev. in press
Guo JU, Su Y, Zhong C, Ming G, Song H: Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011, 145: 423-434.
PubMed Central
CAS
PubMed
Google Scholar
Van den Hove DLA, Chouliaras L, Rutten BPF: The role of 5-hydroxymethylcytosine in aging and Alzheimer’s disease: current status and prospects for future studies. Curr Alzheimer Res. 2012, 9: 545-549.
CAS
PubMed
Google Scholar
Hahn M a, Qiu R, Wu X, Li AX, Zhang H, Wang J, Jui J, Jin S-G, Jiang Y, Pfeifer GP, Lu Q: Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep. 2013, 3: 291-300.
PubMed Central
CAS
PubMed
Google Scholar
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011, 333: 1300-1303.
PubMed Central
CAS
PubMed
Google Scholar
Raiber E-A, Beraldi D, Ficz G, Burgess HE, Branco MR, Murat P, Oxley D, Booth MJ, Reik W, Balasubramanian S: Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 2012, 13: R69-
PubMed Central
PubMed
Google Scholar
He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song C-X, Zhang K, He C, Xu G-L: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011, 333: 1303-1307.
PubMed Central
CAS
PubMed
Google Scholar
Matsubara M, Tanaka T, Terato H, Ohmae E, Izumi S, Katayanagi K, Ide H: Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Res. 2004, 32: 5291-5302.
PubMed Central
CAS
PubMed
Google Scholar
Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007, 445: 671-675.
CAS
PubMed
Google Scholar
Ma DK, Jang M-H, Guo JU, Kitabatake Y, Chang M-L, Pow-Anpongkul N, Flavell R a, Lu B, Ming G-L, Song H: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science (80-). 2009, 323: 1074-1077.
CAS
Google Scholar
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR: DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008, 135: 1201-1212.
PubMed Central
CAS
PubMed
Google Scholar
Schmitz K-M, Schmitt N, Hoffmann-Rohrer U, Schäfer A, Grummt I, Mayer C: TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell. 2009, 33: 344-353.
CAS
PubMed
Google Scholar
Tan L, Xiong L, Xu W, Wu F, Huang N, Xu Y, Kong L, Zheng L, Schwartz L, Shi Y, Shi YG: Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method. Nucleic Acids Res. 2013, 41: e84-
PubMed Central
CAS
PubMed
Google Scholar
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore T a, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011, 473: 398-402.
CAS
PubMed
Google Scholar
Khare T, Pai S, Koncevicius K, Pal M, Kriukiene E, Liutkeviciute Z, Irimia M, Jia P, Ptak C, Xia M, Tice R, Tochigi M, Moréra S, Nazarians A, Belsham D, Wong AHC, Blencowe BJ, Wang SC, Kapranov P, Kustra R, Labrie V, Klimasauskas S, Petronis A: 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol. 2012, 19: 1037-1043.
PubMed Central
CAS
PubMed
Google Scholar
Gavin DP, Chase KA, Sharma RP: Active DNA demethylation in post-mitotic neurons: A reason for optimism. Neuropharmacology. 2013, 75: 233-245.
CAS
PubMed
Google Scholar
Sun G, Fu C, Shen C, Shi Y: Histone deacetylases in neural stem cells and induced pluripotent stem cells. J Biomed Biotechnol. 2011, 2011: 1-6.
Google Scholar
Sun G, Yu RT, Evans RM, Shi Y: Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A. 2007, 104: 15282-15287.
PubMed Central
CAS
PubMed
Google Scholar
Zhou Q, Dalgard CL, Wynder C, Doughty ML: Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci. 2011, 12: 50-
PubMed Central
CAS
PubMed
Google Scholar
Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A. 2004, 101: 16659-16664.
PubMed Central
CAS
PubMed
Google Scholar
Siebzehnrubl F a, Buslei R, Eyupoglu IY, Seufert S, Hahnen E, Blumcke I: Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res. 2007, 176: 672-678.
CAS
PubMed
Google Scholar
Jawerka M, Colak D, Dimou L, Spiller C, Lagger S, Montgomery RL, Olson EN, Wurst W, Göttlicher M, Götz M: The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol. 2010, 6: 93-107.
PubMed
Google Scholar
Merson TD, Dixon MP, Collin C, Rietze RL, Bartlett PF, Thomas T, Voss AK: The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci. 2006, 26: 11359-11370.
CAS
PubMed
Google Scholar
Qureshi IA, Mehler MF: The emerging role of epigenetics in stroke. Arch Neurol. 2011, 68: 294-302.
PubMed Central
PubMed
Google Scholar
Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischka IR, Studer L, Temple S: Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev. 2009, 23: 561-574.
PubMed Central
CAS
PubMed
Google Scholar
Zencak D, Lingbeek M, Kostic C, Tekaya M, Tanger E, Hornfeld D, Jaquet M, Munier FL, Schorderet DF, van Lohuizen M, Arsenijevic Y: Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci. 2005, 25: 5774-5783.
CAS
PubMed
Google Scholar
Bruggeman SWM, Valk-Lingbeek ME, van der Stoop PPM, Jacobs JJL, Kieboom K, Tanger E, Hulsman D, Leung C, Arsenijevic Y, Marino S, van Lohuizen M: Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 2005, 19: 1438-1443.
PubMed Central
CAS
PubMed
Google Scholar
Lim D a, Huang Y-C, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A: Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature. 2009, 458: 529-533.
PubMed Central
CAS
PubMed
Google Scholar
Schouten M, Buijink MR, Lucassen PJ, Fitzsimons CP: New neurons in aging brains: molecular control by small non-coding RNAs. Front Neurosci. 2012, 6: 1-13.
Google Scholar
Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42: D68-D73.
PubMed Central
CAS
PubMed
Google Scholar
Volvert M-L, Rogister F, Moonen G, Malgrange B, Nguyen L: MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ. 2012, 19: 1573-1581.
PubMed Central
CAS
PubMed
Google Scholar
Liu N, Landreh M, Cao K, Abe M, Hendriks G-J, Kennerdell JR, Zhu Y, Wang L-S, Bonini NM: The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature. 2012, 482: 519-523.
PubMed Central
CAS
PubMed
Google Scholar
Fineberg SK, Datta P, Stein CS, Davidson BL: MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One. 2012, 7: e38562-
PubMed Central
CAS
PubMed
Google Scholar
Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CMP: miR-34a regulates mouse neural stem cell differentiation. PLoS One. 2011, 6: e21396-
PubMed Central
CAS
PubMed
Google Scholar
Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D, Forsythe ID, Young KW, Ventura A, Concepcion CP, Han Y-C, Candi E, Knight RA, Mak TW, Melino G: microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci U S A. 2011, 108: 21099-21104.
PubMed Central
CAS
PubMed
Google Scholar
Lukiw WJ: Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007, 18: 297-300.
CAS
PubMed
Google Scholar
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 2008, 14: 27-41.
CAS
PubMed
Google Scholar
Pogue AI, Percy ME, Cui J-G, Li YY, Bhattacharjee S, Hill JM, Kruck TPA, Zhao Y, Lukiw WJ: Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem. 2011, 105: 1434-1437.
PubMed Central
CAS
PubMed
Google Scholar
Lee YS, Kim HK, Chung S, Kim K-S, Dutta A: Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005, 280: 16635-16641.
CAS
PubMed
Google Scholar
Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A: Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 2008, 27: 2616-2627.
PubMed Central
CAS
PubMed
Google Scholar
Cui Y, Xiao Z, Han J, Sun J, Ding W, Zhao Y, Chen B, Li X, Dai J: MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neurosci. 2012, 13: 116-
PubMed Central
CAS
PubMed
Google Scholar
Le MTN, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B, Lodish HF: MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol. 2009, 29: 5290-5305.
PubMed Central
CAS
PubMed
Google Scholar
Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng Z-Q, Zhao X, Fulga TA, Van Vactor D, Bordey A: miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One. 2012, 7: e38174-
PubMed Central
CAS
PubMed
Google Scholar
Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, Storm DR: Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010, 20: 492-498.
PubMed Central
CAS
PubMed
Google Scholar
Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K: Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One. 2010, 5: e15497-
PubMed Central
CAS
PubMed
Google Scholar
Yang D, Li T, Wang Y, Tang Y, Cui H, Tang Y, Zhang X, Chen D, Shen N, Le W: miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci. 2012, 125 (Pt 7): 1673-1682.
CAS
PubMed
Google Scholar
Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH: microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A. 2010, 107: 20382-20387.
PubMed Central
CAS
PubMed
Google Scholar
Abuhatzira L, Makedonski K, Kaufman Y, Razin A, Shemer R: MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics. 2007, 2: 214-222.
PubMed
Google Scholar
Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, Martin KJ, Barton GJ, Hutvagner G, Arthur JSC: Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J. 2010, 428: 281-291.
CAS
PubMed
Google Scholar
Cheng L-C, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009, 12: 399-408.
PubMed Central
CAS
PubMed
Google Scholar
Zhao C, Sun G, Li S, Shi Y: A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol. 2009, 16: 365-371.
PubMed Central
CAS
PubMed
Google Scholar
Zhao C, Sun G, Li S, Lang M-F, Yang S, Li W, Shi Y: MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A. 2010, 107: 1876-1881.
PubMed Central
CAS
PubMed
Google Scholar
Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011, 476: 228-231.
PubMed Central
CAS
PubMed
Google Scholar
Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng Z-Q, Luo Y, Peng J, Bordey A, Jin P, Zhao X: MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010, 28: 1060-1070.
PubMed Central
CAS
PubMed
Google Scholar
Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X, Jin P: Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol. 2010, 189: 127-141.
PubMed Central
CAS
PubMed
Google Scholar
Van den Hove DL, Kompotis K, Lardenoije R, Kenis G, Mill J, Steinbusch HW, Lesch K-P, Fitzsimons CP, De Strooper B, Rutten BPF: Epigenetically regulated microRNAs in Alzheimer’s disease. Neurobiol Aging. 2014, 35: 731-745.
CAS
PubMed
Google Scholar
Liu C, Teng Z, Santistevan N, Szulwach K: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010, 6: 433-444.
PubMed Central
CAS
PubMed
Google Scholar
American Psychiatric Association: Diagnostic and statistical manual of mental disorders (4th ed., text rev.). 2000
Google Scholar
Maccioni RB, Muñoz JP, Barbeito L: The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res. 2001, 32: 367-381.
CAS
PubMed
Google Scholar
Fuster-Matanzo A, Llorens-Martín M, Hernández F, Avila J: Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediators Inflamm. 2013, 2013: 1-9.
Google Scholar
Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA: Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004, 101: 343-347.
PubMed Central
CAS
PubMed
Google Scholar
Boekhoorn K, Joels M, Lucassen PJ: Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis. 2006, 24: 1-14.
CAS
PubMed
Google Scholar
Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J: Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis. 2012, 47: 155-162.
PubMed Central
CAS
PubMed
Google Scholar
Crews L, Adame A, Patrick C, Delaney A, Pham E, Rockenstein E, Hansen L, Masliah E: Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci. 2010, 30: 12252-12262.
PubMed Central
CAS
PubMed
Google Scholar
Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S, Iqbal K, Grundke-Iqbal I: Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol. 2008, 67: 78-84.
PubMed Central
CAS
PubMed
Google Scholar
Waldau B, Shetty AK: Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci. 2008, 65: 2372-2384.
PubMed Central
CAS
PubMed
Google Scholar
Taupin P: Adult neurogenesis, neural stem cells and Alzheimer’s disease:developments, limitations, problems and promises. Curr Alzheimer Res. 2009, 6: 461-470.
CAS
PubMed
Google Scholar
Brinton RD, Wang JM: Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res. 2006, 3: 185-190.
CAS
PubMed
Google Scholar
Ziabreva I, Perry E, Perry R, Minger SL, Ekonomou A, Przyborski S, Ballard C: Altered neurogenesis in Alzheimer’s disease. J Psychosom Res. 2006, 61: 311-316.
PubMed
Google Scholar
Lilja AM, Röjdner J, Mustafiz T, Thomé CM, Storelli E, Gonzalez D, Unger-Lithner C, Greig NH, Nordberg A, Marutle A: Age-dependent neuroplasticity mechanisms in Alzheimer Tg2576 mice following modulation of brain amyloid-β levels. PLoS One. 2013, 8: e58752-
PubMed Central
CAS
PubMed
Google Scholar
Li G, Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Ring K, Halabisky B, Deng C, Mahley RW, Huang Y: GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell. 2009, 5: 634-645.
PubMed Central
CAS
PubMed
Google Scholar
Brasnjevic I, Lardenoije R, Schmitz C, Kolk N, Dickstein DL, Takahashi H, Hof PR, Steinbusch HWM, Rutten BPF: Region-specific neuron and synapse loss in the hippocampus of APPSL/PS1 knock-in mice. Transl Neurosci. 2013, 4: 8-19.
PubMed Central
PubMed
Google Scholar
Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang Y-P: Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiol Dis. 2008, 29: 316-326.
PubMed Central
CAS
PubMed
Google Scholar
Morgenstern NA, Giacomini D, Lombardi G, Castaño EM, Schinder AF: Delayed dendritic development in newly generated dentate granule cells by cell-autonomous expression of the amyloid precursor protein. Mol Cell Neurosci. 2013, 56: 298-306.
CAS
PubMed
Google Scholar
Zhao C, Teng EM, Summers RG, Ming G-L, Gage FH: Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006, 26: 3-11.
CAS
PubMed
Google Scholar
West RL, Lee JM, Maroun LE: Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci. 1995, 6: 141-146.
CAS
PubMed
Google Scholar
Barrachina M, Ferrer I: DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol. 2009, 68: 880-891.
CAS
PubMed
Google Scholar
Brohede J, Rinde M, Winblad B, Graff C: A DNA methylation study of the amyloid precursor protein gene in several brain regions from patients with familial Alzheimer disease. J Neurogenet. 2010, 24: 179-181.
CAS
PubMed
Google Scholar
Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M: Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res. 1999, 70: 288-292.
CAS
PubMed
Google Scholar
Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y: The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett. 1999, 275: 89-92.
CAS
PubMed
Google Scholar
Morrison LD, Smith DD, Kish SJ: Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem. 1996, 67: 1328-1331.
CAS
PubMed
Google Scholar
Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD: Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One. 2009, 4: e6617-
PubMed Central
PubMed
Google Scholar
Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J: Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging. 2010, 31: 2025-2037.
PubMed Central
CAS
PubMed
Google Scholar
Chouliaras L, van den Hove DLA, Kenis G, Keitel S, Hof PR, van Os J, Steinbusch HWM, Schmitz C, Rutten BPF: Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction. Neurobiol Aging. 2012, 33: 1672-1681.
PubMed Central
CAS
PubMed
Google Scholar
Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HWM, Coleman PD, Rutten BPF, van den Hove DLA: Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging. 2013, 34: 2091-2099.
PubMed Central
CAS
PubMed
Google Scholar
Condliffe D, Wong A, Troakes C, Proitsi P, Patel Y, Chouliaras L, Fernandes C, Cooper J, Lovestone S, Schalkwyk LC, Mill J, Lunnon K: Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain. Neurobiol Aging. in press
Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J: The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun. 2009, 378: 57-61.
CAS
PubMed
Google Scholar
Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S: DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One. 2007, 2: e895-
PubMed Central
PubMed
Google Scholar
Urdinguio RG, Sanchez-Mut JV, Esteller M: Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 2009, 8: 1056-1072.
CAS
PubMed
Google Scholar
Hoyaux D, Decaestecker C, Heizmann CW, Vogl T, Schäfer BW, Salmon I, Kiss R, Pochet R: S100 proteins in Corpora amylacea from normal human brain. Brain Res. 2000, 867: 280-288.
CAS
PubMed
Google Scholar
Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA: Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease?. FEBS Lett. 2003, 541: 145-148.
CAS
PubMed
Google Scholar
Bakulski KM, Dolinoy DC, Sartor M a, Paulson HL, Konen JR, Lieberman AP, Albin RL, Hu H, Rozek LS: Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis. 2012, 29: 571-588.
CAS
PubMed
Google Scholar
Münzel M, Globisch D, Brückl T, Wagner M, Welzmiller V, Michalakis S, Müller M, Biel M, Carell T: Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl. 2010, 49: 5375-5377.
PubMed
Google Scholar
Song C-X, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen C-H, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C: Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011, 29: 68-72.
PubMed Central
CAS
PubMed
Google Scholar
Morgan AR, Hamilton G, Turic D, Jehu L, Harold D, Abraham R, Hollingworth P, Moskvina V, Brayne C, Rubinsztein DC, Lynch A, Lawlor B, Gill M, O’Donovan M, Powell J, Lovestone S, Williams J, Owen MJ: Association analysis of 528 intra-genic SNPs in a region of chromosome 10 linked to late onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B: 727-731.
CAS
PubMed
Google Scholar
Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W: Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics. 2012, 12: 1261-1268.
CAS
PubMed
Google Scholar
Marques SCF, Lemos R, Ferreiro E, Martins M, de Mendonça A, Santana I, Outeiro TF, Pereira CMF: Epigenetic regulation of BACE1 in Alzheimer’s disease patients and in transgenic mice. Neuroscience. 2012, 220: 256-266.
CAS
PubMed
Google Scholar
Gräff J, Kim D, Dobbin MM, Tsai L-H: Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev. 2011, 91: 603-649.
PubMed
Google Scholar
Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010, 328: 753-756.
CAS
PubMed
Google Scholar
Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G: Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2010, 35: 870-880.
PubMed Central
CAS
PubMed
Google Scholar
Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai L-H: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009, 459: 55-60.
PubMed Central
CAS
PubMed
Google Scholar
Gräff J, Rei D, Guan J-S, Wang W-Y, Seo J, Hennig KM, Nieland TJF, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai L-H: An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 2012, 483: 222-226.
PubMed Central
PubMed
Google Scholar
Bicchi I, Morena F, Montesano S, Polidoro M, Martino S: MicroRNAs and Molecular Mechanisms of Neurodegeneration. Genes. 2013, 4: 244-263.
PubMed Central
PubMed
Google Scholar
Hébert SS, Sergeant N, Buée L: MicroRNAs and the Regulation of Tau Metabolism. Int J Alzheimers Dis. 2012, 2012: 1-6.
Google Scholar
Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X: MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol Aging. 2012, 33: 522-534.
CAS
PubMed
Google Scholar
Takeda T: Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res. 2009, 34: 639-659.
CAS
PubMed
Google Scholar
Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC, Saunders AJ: MicroRNAs can regulate human APP levels. Mol Neurodegener. 2008, 3: 10-
PubMed Central
PubMed
Google Scholar
Long JM, Ray B, Lahiri DK: MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem. 2012, 287: 31298-31310.
PubMed Central
CAS
PubMed
Google Scholar
Zhu H-C, Wang L-M, Wang M, Song B, Tan S, Teng J-F, Duan D-X: MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull. 2012, 88: 596-601.
CAS
PubMed
Google Scholar
Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W, Han S: The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett. 2012, 209: 94-105.
CAS
PubMed
Google Scholar
Geekiyanage H, Chan C: MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J Neurosci. 2011, 31: 14820-14830.
PubMed Central
CAS
PubMed
Google Scholar
Wang H, Liu J, Zong Y, Xu Y, Deng W, Zhu H, Liu Y, Ma C, Huang L, Zhang L, Qin C: miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res. 2010, 1357: 166-174.
CAS
PubMed
Google Scholar
Schonrock N, Humphreys DT, Preiss T, Götz J: Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci. 2012, 46: 324-335.
CAS
PubMed
Google Scholar
Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stähler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A: A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013, 14: R78-
PubMed Central
PubMed
Google Scholar
Wilson RS, Arnold SE, Schneider JA, Kelly JF, Tang Y, Bennett DA: Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology. 2006, 27: 143-153.
PubMed
Google Scholar
LaPlant Q, Vialou V, Covington HE, Dumitriu D, Feng J, Warren BL, Maze I, Dietz DM, Watts EL, Iñiguez SD, Koo JW, Mouzon E, Renthal W, Hollis F, Wang H, Noonan MA, Ren Y, Eisch AJ, Bolaños CA, Kabbaj M, Xiao G, Neve RL, Hurd YL, Oosting RS, Fan G, Morrison JH, Nestler EJ: Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci. 2010, 13: 1137-1143.
PubMed Central
CAS
PubMed
Google Scholar
Qing H, He G, Ly PTT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H, Zhou W, Wang K, Song W: Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med. 2008, 205: 2781-2789.
PubMed Central
CAS
PubMed
Google Scholar
Ogawa O, Zhu X, Lee H-G, Raina A, Obrenovich ME, Bowser R, Ghanbari HA, Castellani RJ, Perry G, Smith MA: Ectopic localization of phosphorylated histone H3 in Alzheimer’s disease: a mitotic catastrophe?. Acta Neuropathol. 2003, 105: 524-528.
CAS
PubMed
Google Scholar
Mastroeni D, Chouliaras L, Grover A, Liang WS, Hauns K, Rogers J, Coleman PD: Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer’s disease pathophysiology. PLoS One. 2013, 8: e53349-
PubMed Central
CAS
PubMed
Google Scholar
Delacourte A, Buée L: Animal models of Alzheimer’s disease: a road full of pitfalls. Psychol Neuropsychiatr Vieil. 2005, 3: 261-270.
PubMed
Google Scholar
German DC, Eisch AJ: Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci. 2004, 15: 353-369.
PubMed
Google Scholar
Chouliaras L, Sierksma ASR, Kenis G, Prickaerts J, Lemmens MAM, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, van Leeuwen F, Hof PR, van Os J, Steinbusch HWM, van den Hove DLA, Rutten BPF: Gene-environment interaction research and transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis. 2010, 2010: 1-27.
Google Scholar
Chouliaras L, Rutten BPF, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HWM, van den Hove DLA: Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol. 2010, 90: 498-510.
CAS
PubMed
Google Scholar
Kwok JBJ: Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics. 2010, 2: 671-682.
CAS
PubMed
Google Scholar
Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676.
CAS
PubMed
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131: 861-872.
CAS
PubMed
Google Scholar
Verma A, Verma N: Induced pluripotent stem cells and promises of neuroregenerative medicine. Neurol India. 2011, 59: 555-557.
PubMed
Google Scholar
Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LIR, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ: Epigenetic memory in induced pluripotent stem cells. Nature. 2010, 467: 285-290.
PubMed Central
CAS
PubMed
Google Scholar
Wojda U, Kuznicki J: Alzheimer’s disease modeling: ups, downs, and perspectives for human induced pluripotent stem cells. J Alzheimers Dis. 2013, 34: 563-588.
CAS
PubMed
Google Scholar
Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LSB: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482: 216-220.
PubMed Central
CAS
PubMed
Google Scholar
Pyko IV, Nakada M, Sabit H, Teng L, Furuyama N, Hayashi Y, Kawakami K, Minamoto T, Fedulau AS, Hamada J: Glycogen synthase kinase 3β inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis. 2013, 34: 2206-2217.
CAS
PubMed
Google Scholar
Christmann M, Verbeek B, Roos WP, Kaina B: O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta. 1816, 2011: 179-190.
Google Scholar
Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti WB, Moreno H, Abeliovich A: Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell. 2011, 146: 359-371.
PubMed Central
CAS
PubMed
Google Scholar
Tian C, Liu Q, Ma K, Wang Y, Chen Q, Ambroz R, Klinkebiel DL, Li Y, Huang Y, Ding J, Wu J, Zheng JC: Characterization of induced neural progenitors from skin fibroblasts by a novel combination of defined factors. Sci Rep. 2013, 3: 1345-
PubMed Central
PubMed
Google Scholar
Capsoni S: β-Amyloid Plaques in a Model for Sporadic Alzheimer’s Disease Based on Transgenic Anti-Nerve Growth Factor Antibodies. Mol Cell Neurosci. 2002, 21: 15-28.
CAS
PubMed
Google Scholar