De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955;60:604–17.
Article
PubMed Central
Google Scholar
Luzio JP, Parkinson MD, Gray SR, Bright NA. The delivery of endocytosed cargo to lysosomes. Biochem Soc Trans. 2009;37:1019–21. https://doi.org/10.1042/BST0371019.
Article
CAS
PubMed
Google Scholar
Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC. Mammalian autophagy: How does it work? Annu Rev Biochem. 2016;85:685–13. https://doi.org/10.1038/ncomms11803.
Article
CAS
PubMed
Google Scholar
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41. https://doi.org/10.1016/j.cell.2011.10.026Ballabio.
Article
CAS
PubMed
Google Scholar
Ballabio A, Gieselmann V. Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta. 1793;2009:684–96. https://doi.org/10.1016/j.bbamcr.2008.12.001.
Article
CAS
Google Scholar
Parenti G, Andria G, Ballabio A. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med. 2015;66:471–86. https://doi.org/10.1146/annurev-med-122313-085916.
Article
CAS
PubMed
Google Scholar
Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol. 2012;199:723–34. https://doi.org/10.1083/jcb.201208152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proia RL, Wu YP. Blood to brain to the rescue. J Clin Invest. 2004;113:1108–10. https://doi.org/10.1172/JCI21476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009;10:623–35. https://doi.org/10.1038/nrm2745.
Article
CAS
PubMed
Google Scholar
Schwake M, Schroder B, Saftig P. Lysosomal membrane proteins and their central role in physiology. Traffic. 2013;14:739–48. https://doi.org/10.1111/tra.12056.
Article
CAS
PubMed
Google Scholar
Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 2009;458:445–52. https://doi.org/10.1038/nature07961.
Article
CAS
PubMed
Google Scholar
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–96. https://doi.org/10.1038/nrm3565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517:302–10. https://doi.org/10.1038/nature14190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz ML, Tecedor L, Chang M, Davidson BL. Clarifying lysosomal storage diseases. Trends Neurosci. 2011;34:401–10. https://doi.org/10.1016/j.tins.2011.05.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braulke T, Bonifacino JS. Sorting of lysosomal proteins. Biochim Biophys Acta. 1793;2009:605–14. https://doi.org/10.1016/j.bbamcr.2008.10.016.
Article
CAS
Google Scholar
Seranova E, Connolly KJ, Zatyka M, Rosenstock TR, Barrett T, Tuxworth RI, et al. Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem. 2017;61:733–49. https://doi.org/10.1042/EBC20170055.
Article
PubMed
PubMed Central
Google Scholar
Di Fiore PP, von Zastrow M. Endocytosis, signaling, and beyond. Cold Spring Harb Perspect Biol 2014; 6. pii: a016865. https://doi.org/10.1101/cshperspect.a016865
Gruenberg J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol. 2001;2:721–30. https://doi.org/10.1038/35096054.
Article
CAS
PubMed
Google Scholar
Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10. https://doi.org/10.1016/j.semcdb.2014.03.034.
Article
CAS
PubMed
Google Scholar
Attar N, Cullen PJ. The retromer complex. Adv Enzyme Regul. 2010;50:216–36. https://doi.org/10.1016/j.advenzreg.2009.10.002.
Article
PubMed
Google Scholar
McGough IJ, Cullen PJ. Recent advances in retromer biology. Traffic. 2011;12:963–71. https://doi.org/10.1111/j.1600-0854.2011.01201.x.
Article
CAS
PubMed
Google Scholar
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25. https://doi.org/10.1016/j.ceb.2014.05.004.
Article
CAS
PubMed
Google Scholar
Pfeffer SR. Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell. 2017;28:712–5. https://doi.org/10.1091/mbc.E16-10-0737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YC, Ysselstein D, Kraine D. Mitochondria-lysosome contacts regulate mitochondrial fission via Rab GTP hydrolysis. Nature. 2018;554:382–6. https://doi.org/10.1038/nature25486.
Article
CAS
Google Scholar
Holopainen JM, Saarikoski J, Kinnunen PKJ, Jarvela I. Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). Eur J Biochem. 2001;268:5851–6. https://doi.org/10.1046/j.0014-2956.2001.02530.x.
Article
CAS
PubMed
Google Scholar
Kyttälä A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. Biochim Biophys Acta. 1762;2006:920–33. https://doi.org/10.1016/j.bbadis.2006.05.007.
Article
CAS
Google Scholar
Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8:917–29. https://doi.org/10.1038/nrm2272.
Article
CAS
PubMed
Google Scholar
Nishi T, Forgac M. The vacuolar H-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3:94–103. https://doi.org/10.1038/nrm729.
Article
CAS
PubMed
Google Scholar
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74:69–86. https://doi.org/10.1146/annurev-physiol-012110-142317.
Article
CAS
PubMed
Google Scholar
Chaudhry FA, Boulland JL, Jenstad M, Bredahl MK, Edwards RH. Pharmacology of neurotransmitter transport into secretory vesicles. Handb Exp Pharmacol. 2008;184:77–106. https://doi.org/10.1007/978-3-540-74805-2_4.
Article
CAS
Google Scholar
Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev. Biochem. 1986;55:663–700. https://doi.org/10.1146/annurev.bi.55.070186.003311.
Article
CAS
PubMed
Google Scholar
Heuser J. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J Cell Biol. 1989;108:855–64. https://doi.org/10.1083/jcb.108.3.855.
Article
CAS
PubMed
Google Scholar
Bourdenx M, Daniel J, Genin E, Soria FN, Blanchard-Desce M, Bezard E, et al. Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy. 2016;12:472–83. https://doi.org/10.1080/15548627.2015.1136769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahn R, Lang T, Sudhof TC. Membrane Fusion. Cell. 2003;12:519–33. https://doi.org/10.1016/S0092-8674(03)00112-0.
Article
Google Scholar
Rizo J, Südhof TC. The membrane fusion enigma: SNAREs, Sec1/Munc 18 proteins, and their accomplices---guilty as charged? Annu Rev Cell Dev Biol. 2012;28:279–308. https://doi.org/10.1146/annurev-cellbio-101011-155818.
Article
CAS
PubMed
Google Scholar
Baars TL, Petri S, Peters C, Mayer A. Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol. Biol. Cell. 2007;18:3873–82. https://doi.org/10.1091/mbc.E07-03-0205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Autophagosome precursor maturation requires homotypic fusion. Cell. 2011;146:303–17. https://doi.org/10.1016/j.cell.2011.06.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boya P, Reggiori F, Codogno P. Emerging regulation and function of autophagy. Nat Cell Biol. 2013;15:713–20. https://doi.org/10.1038/ncb2788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36:1811–36. https://doi.org/10.15252/embj.201796697.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443:780–6. https://doi.org/10.1038/nature05291.
Article
CAS
PubMed
Google Scholar
Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, et al. Autophagy in lysosomal storage disorders. Autophagy. 2012;8:719–30. https://doi.org/10.4161/auto.19469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ballabio A. Disease pathogenesis explained by basic science: lysosomal storage diseases as autophagocytic disorders. Int J Clin Pharmacol Ther. 2009;47(1):S34–8.
CAS
PubMed
Google Scholar
Lie P, Nixon RA. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol Dis. 2018; pii: S0969-9961(18)30153-0. https://doi.org/10.1016/j.nbd.2018.05.015.
Nixon RA. The role of autophagy in neurodegenerative diseases. Nat Med. 2013;19:983–97. https://doi.org/10.1038/nm.3232.
Article
CAS
PubMed
Google Scholar
Frake RA, Ricketts T, Menzies FM, Rubinsztein DC. Autophagy and neurodegeneration. J Clin Invest. 2015;125:65–74. https://doi.org/10.1172/JCI73944.
Article
PubMed
PubMed Central
Google Scholar
Simonati A, Pezzini F, Moro F, Santorelli FM. Neuronal ceroid lipofuscinosis: The increasing spectrum of an old disease. Curr Mol Med. 2014;14:1043–51. https://doi.org/10.2174/1566524014666141010154913.
Article
CAS
PubMed
Google Scholar
Carcel-Trullols J, Kovacs AD, Pearce DA. Cell biology of the NCL proteins: what they do and don’t do. Biochim Biophys Acta. 1852;2015:2242–55. https://doi.org/10.1016/j.bbadis.2015.04.027.
Article
CAS
Google Scholar
Cooper JD, Tarczyluk MA, Nelvagal HR. Towards a new understanding of NCL pathogenesis. Biochim Biophys Acta. 2015;1852:2256–61. https://doi.org/10.1016/j.bbadis.2015.05.014.
Article
CAS
PubMed
Google Scholar
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta. 2013;1832:1866–81. https://doi.org/10.1016/j.bbadis.2013.01.019.
Article
CAS
PubMed
Google Scholar
Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 1852;2015:2237–41. https://doi.org/10.1016/j.bbadis.2015.05.011.
Article
CAS
Google Scholar
Radke J, Stenzel W, Goebel HH. Human NCL neuropathology. Biochim Biophys Acta. 1852;2015:2262–6. https://doi.org/10.1016/j.bbadis.2015.05.007.
Article
CAS
Google Scholar
Haltia M, Goebel HH. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta. 1832;2003:1795–800. https://doi.org/10.1016/j.bbadis.2012.08.012.
Article
CAS
Google Scholar
Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325:473–7. https://doi.org/10.1126/science.1174447.
Article
CAS
PubMed
Google Scholar
Carroll B, Dunlop EA. The lysosome: a crucial hub for AMPK and mTORC1 signaling. Biochem J. 2017;474:1453–66. https://doi.org/10.1042/BCJ20160780.
Article
CAS
PubMed
Google Scholar
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–108. https://doi.org/10.1038/emboj.2012.32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perera RM, Zoncu R. The lysosome as a regulatory Hub. Annu Rev Cell Dev Biol. 2016;32:223–53. https://doi.org/10.1146/annurev-cellbio-111315-125125.
Article
CAS
PubMed
Google Scholar
Camp LA, Hofmann SL. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem. 1993;268:22566–74.
CAS
PubMed
Google Scholar
Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, et al. Mutatons in the palmitoyl protein thioesterases gene causing infantile neuronal ceroid lipofuscinosis. Nature. 1995;376:584–7. https://doi.org/10.1038/376584a0.
Article
CAS
PubMed
Google Scholar
Santavuori P. Neuronal ceroid-lipofuscinoses in childhood. Brain Dev. 1988;10:80–3. https://doi.org/10.1016/S0387-7604(88)80075-5.
Article
CAS
PubMed
Google Scholar
Kousi M, Anttila V, Schulz A, Calafato S, Jakkula E, Riesch E, et al. Novel mutations consolidate KCTD7 as a progressive myoclonus epilepsy gene. J Med Genet. 2012;49:391–9. https://doi.org/10.1136/jmedgenet-2012-100859.
Article
CAS
PubMed
Google Scholar
Lu JY, Verkruyse LA, Hofmann SL. Lipid thioesters derived from acylated proteins accumulate in infantile neuronal ceroid lipofuscinosis: correction of the defect in lymphoblasts by recombinant palmitoyl-protein thioesterase. Proc Natl Acad Sci U S A. 1996;93:10046–50. https://doi.org/10.1073/pnas.93.19.10046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camp LA, Verkruyse LA, Afendis SJ, Slaughter CA, Hofmann SL. Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem. 1994;269:23212–9.
CAS
PubMed
Google Scholar
Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007;8:74–84. https://doi.org/10.1038/nrm2084.
Article
CAS
PubMed
Google Scholar
Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci. 2010;11:161–75. https://doi.org/10.1038/nrn2788.
Article
CAS
PubMed
Google Scholar
Khan A, Chieng KS, Baheerathan A, Hussain N, Gosalakkal J. Novel CLN1 mutation with atypical juvenile neuronal ceroid lipofuscinosis. J Pediatr Neurosci. 2013;8:49–51. https://doi.org/10.4103/1817-1745.111424.
Article
PubMed
PubMed Central
Google Scholar
Mitchison HM, Hofmann SL, Becerra CH, Munroe V, Lake BD, Crow YJ, et al. Mutations in the palmitoyl-protein thioesterases gene (PPT; CLN1) causing juvenile neuronal ceroid lipofuscinosis with granular osmiophilic deposits. Hum Mol Genet. 1998;7:291–7. https://doi.org/10.1093/hmg/7.2.291.
Article
CAS
PubMed
Google Scholar
Henderson MX, Wirak GS, Zhang YQ, Dai F, Ginsberg SD, Dolzhanskaya N, et al. Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol. 2016;131:621–37. https://doi.org/10.1007/s00401-015-1512-2.
Article
CAS
PubMed
Google Scholar
Bagh MB, Peng S, Chandra G, Zhang Z, Singh SP, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612. https://doi.org/10.1038/ncomms14612.
Article
PubMed
PubMed Central
Google Scholar
Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol. 2017;13:477–91. https://doi.org/10.1038/nrneurol.2017.99.
Article
CAS
PubMed
Google Scholar
Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell. 2009;36:500–11. https://doi.org/10.1016/j.molcel.2009.10.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Lee YC, Kim SJ, Choi MS, Tsai PC, Xu Y, et al. Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum Mol Genet. 2006;15:337–46. https://doi.org/10.1093/hmg/ddi451.
Article
CAS
PubMed
Google Scholar
Sprenkle NT, Sims SG, Sanchez CL, Meares GP. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener. 2017;12:42. https://doi.org/10.1186/s13024-017-0183-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SJ, Zhang Z, Hitomi E, Lee YC, Mukherjee AB. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet. 2006;15:1826–34. https://doi.org/10.1093/hmg/ddl105.
Article
CAS
PubMed
Google Scholar
Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB. ER and oxidative stress are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet. 2008;17:469–77. https://doi.org/10.1093/hmg/ddm324.
Article
CAS
PubMed
Google Scholar
Marotta D, Tinelli E, Mole SE. NCLs and ER: A stressful relationship. Biochim Biophys Acta. 1863;2017:1273–81. https://doi.org/10.1016/j.bbadis.2017.04.003.
Article
CAS
Google Scholar
Sleat DE, Gin RM, Sohar I, Wisniewski K, Sklower-Brooks S, Pullarkat RK, et al. Mutational analysis of the defective protease in classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. Am J Hum Genet. 1999;64:1511–23. https://doi.org/10.1086/302427.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golabek AA, Kida E, Walus M, Wujek P, Mehta P, Wisniewski KE. Biosynthesis, glycosylation and enzyme processing in vivo of human tripeptidyl peptidase I. J Biol Chem. 2003;278:7135–45. https://doi.org/10.1074/jbc.M211872200.
Article
CAS
PubMed
Google Scholar
Vines DJ, Warburton MJ. Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I. FEBS Lett. 1999;443:131–5. https://doi.org/10.1016/S0014-5793(98)01683-4.
Article
CAS
PubMed
Google Scholar
Guhaniyogi J, Sohar I, Das K, Stock AM, Lobel P. Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J Biol Chem. 2009;284:3985–97. https://doi.org/10.1074/jbc.M806943200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuizon S, Di Maiuta K, Walus M, Jenkins EC, Kuizon M, Kida E, et al. A critical tryptophan and Ca2 + in activation and catalysis of TPPI, the enzyme deficient in classic late-infantile neuronal ceroid lipofuscinosis. PLoS One. 2010;5:e11929. https://doi.org/10.1371/journal.pone.0011929.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurachi Y, Oka A, Itoh M, Mizuguchi M, Hayashi M, Takashima S. Distribution and development of CLN2 protein, the late-infantile neuronal ceroid lipofuscinosis gene product. Acta Neuropathol. 2001;102:20–6. https://doi.org/10.1007/s004010000321.
Article
CAS
PubMed
Google Scholar
Koike M, Shibata M, Ohsawa Y, Kametaka S, Waguri S, et al. The expression of tripeptidyl peptidase I in various tissues of rats and mice. Arch Histol Cytol. 2002;65:219–32. https://doi.org/10.1679/aohc.65.219.
Article
CAS
PubMed
Google Scholar
Williams RE, Adams HR, Blohm M, Cohen-Pfeffer JL, de Los RE, Denecke J, et al. Management strategies for CLN2 disease. Pediatr Neurol. 2017;69:102–12. https://doi.org/10.1016/j.pediatrneurol.2017.01.034.
Article
PubMed
Google Scholar
Vidal-Donet JM, Cárcel-Trullols J, Casanova B, Aguado C, Knecht E. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One. 2013;8:e55526. https://doi.org/10.1371/journal.pone.0055526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Yang X, Zhang J. Bridges between mitochondrial oxidative stress, ER-Stress and mTOR signaling in pancreatic β cells. Cell Signal. 2016;28:1099–104. https://doi.org/10.1016/j.cellsig.2016.05.007.
Article
CAS
PubMed
Google Scholar
Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK, et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet. 2014;23:2005–22. https://doi.org/10.1093/hmg/ddt596.
Article
CAS
PubMed
Google Scholar
Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M, et al. Proteomic analysis of brain and cerebrospinal fluid from three major forms of neuronal ceroid lipofuscinosis reveals potential biomarkers. J Proteome Res. 2017;16:3787–804. https://doi.org/10.1021/acs.jproteome.7b00460.
Article
CAS
PubMed
PubMed Central
Google Scholar
International Batten Disease Consortium. Isolation of a novel gene underlying Batten disease, CLN3. Cell. 1995;82:949–57. https://doi.org/10.1016/0092-8674(95)90274-0.
Article
Google Scholar
Nugent T, Mole SE, Jones DT. The transmembrane topology of Batten disease protein CLN3 determined by consensus computational prediction constrained by experimental data. FEBS Lett. 2008;582:1019–24. https://doi.org/10.1016/j.febslet.2008.02.049.
Article
CAS
PubMed
Google Scholar
Ratajczak E, Petcherski A, Ramos-Moreno J, Ruonala MO. FRET-assisted determination of CLN3 membrane topology. PLoS One. 2014;22:e102593. https://doi.org/10.1371/journal.pone.0102593.
Article
CAS
Google Scholar
Mole SE, Karaa A, Staropoli JF, Sims KB. Neuronal ceroid lipofuscinosis: impact of recent genetic advances and expansion of the clinicopathologic spectrum. Curr Neurol Neurosci Rep. 2013;13:366. https://doi.org/10.1007/s11910-013-0366-z.
Article
CAS
Google Scholar
Chan CH, Mitchison HM, Pearce DA. Transcript and in silico analysis of CLN3 in juvenile neuronal ceroid lipofuscinosis and associated mouse models. Hum Mol Genet. 2008;17:3332–9. https://doi.org/10.1093/hmg/ddn228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chattopadhyay S, Pearce DA. Neural and extraneural expression of the neuronal ceroid lipofuscinoses genes CLN1, CLN2, and CLN3: functional implications for CLN3. Mol Genet Metab. 2000;71:207–11. https://doi.org/10.1006/mgme.2000.3056.
Article
CAS
PubMed
Google Scholar
Castaneda JA, Pearce DA. Identification of alpha-fetoprotein as an autoantigen in juvenile Batten disease. Neurobiol Dis. 2008;29:92–102. https://doi.org/10.1016/j.nbd.2007.08.007.
Article
CAS
PubMed
Google Scholar
Chattopadhyay S, Ito M, Cooper JD, Brooks AI, Curran TM, Powers JM, et al. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum. Mol. Genet. 2002;11:1421–31. https://doi.org/10.1093/hmg/11.12.1421.
Article
CAS
PubMed
Google Scholar
Hofman I, Van der Wal A, Dingemans K, Becker A. Cardiac pathology in neuronal ceroid lipofuscinoses – a clinicopathologic correlation in three patients. Eur J Paediatr Neurol. 2001;5:213–7. https://doi.org/10.1053/ejpn.2000.0465.
Article
PubMed
Google Scholar
Haskell RE, Carr CJ, Pearce DA, Bennett MJ, Davidson BL. Batten Disease: Evaluation of CLN3 mutations on protein localization and function. Hum Mol Genet. 2000;9:735–44. https://doi.org/10.1093/hmg/9.5.735.
Article
CAS
PubMed
Google Scholar
Jarvela I, Lehtovirta M, Tikknen R, Kyttala A, Jalenko A. Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL). Hum Mol Genet. 1999;8:1091–8. https://doi.org/10.1093/hmg/8.6.1091.
Article
CAS
PubMed
Google Scholar
Jarvela I, Sainio M, Rantamaki T, Olkkonen VM, Carpen O, Peltonen L, et al. Biosynthesis and intracellular targeting of the CLN3 protein defective in Batten disease. Hum Mol. Genet. 1998;7:85–90. https://doi.org/10.1093/hmg/7.1.85.
Article
CAS
PubMed
Google Scholar
Cao Y, Staropoli JF, Biswas S, Espinola JA, MacDonald ME, Lee JM, et al. Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells. PLoS One. 2011;6:e17118. https://doi.org/10.1371/journal.pone.0017118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metcalf DJ, Calvi AA, Seaman MN, Mitchison HM, Cutler DF. Loss of the Batten disease gene CLN3 prevents exit from the TGN of the mannose 6-phosphate receptor. Traffic. 2008;9:1905–14. https://doi.org/10.1111/j.1600-0854.2008.00807.x.
Article
CAS
PubMed
Google Scholar
Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, et al. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem. 2006;281:20483–93. https://doi.org/10.1074/jbc.M602180200.
Article
CAS
PubMed
Google Scholar
Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M, et al. Unbiased cell-based screening in a neuronal cell model of Batten disease highlights an interaction between Ca2+ homeostasis, autophagy and CLN3 protein function. J Biol Chem. 2015;290:14361–80. https://doi.org/10.1074/jbc.M114.621706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Huang Z, Chen Y, Zhou J, Hu S, Zhi Q, et al. Effect of CLN3 silencing by RNA interference on the proliferation and apoptosis of human colorectal cancer cells. Biomed Pharmacother. 2014;68:253–8. https://doi.org/10.1016/j.biopha.2013.12.010.
Article
CAS
PubMed
Google Scholar
Rusyn E, Mousallem T, Persaud-Sawin DA, Miller S, Boustany RM. CLN3p impacts galactosylceramide transport, raft morphology, and lipid content. Pediatr Res. 2008;63:625–31. https://doi.org/10.1203/PDR.0b013e31816fdc17.
Article
CAS
PubMed
Google Scholar
Palmer DN. The relevance of the storage of subunit c of ATP synthase in different forms and models of Batten disease (NCLs). Biochim Biophys Acta. 2015;1852:2287–91. https://doi.org/10.1016/j.bbadis.2015.06.014.
Article
CAS
PubMed
Google Scholar
Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour MI, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017;8:14338. https://doi.org/10.1038/ncomms14338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noskova V, Stranecky H, Hartmannova A, Pristoupilova V, Baresova R. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet. 2011;89:241–52. https://doi.org/10.1016/j.ajhg.2011.07.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simonati A, Pezzini F, Moro F, Santorelli FM. Neuronal ceroid lipofuscinosis: The increasing spectrum of an old disease. Curr. Mol. Med. 2014;14:1043–51. https://doi.org/10.2174/1566524014666141010154913.
Article
CAS
PubMed
Google Scholar
Smith KR, Dahl HH, Canafoglia L, Andermann E, Damiano J, Morbin M, et al. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22:1417–23. https://doi.org/10.1093/hmg/dds558.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters J, Tittger A, Weisner R, Knabbe J, Zunke F, Rothaug M, et al. Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease. Biochem Biophys Res Commun. 2015;457:334–40. https://doi.org/10.1016/j.bbrc.2014.12.111.
Article
CAS
PubMed
Google Scholar
Berkovic SF, Staropoli JF, Carpenter S, Oliver KL, Kmoch S, Anderson GW, et al. ANCL Gene Discovery Consortium. Neurol. 2016;87:579–84. https://doi.org/10.1212/WNL.0000000000002943.
Article
CAS
Google Scholar
Donnelier J, Braun JEA. CSPα—chaperoning presynaptic proteins. Front Cell Neurosci. 2014;8:116. https://doi.org/10.3389/fncel.2014.00116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. Alpha synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005;123:383–96. https://doi.org/10.1016/j.cell.2005.09.028.
Article
CAS
PubMed
Google Scholar
Sharma M, Burré J, Bronk P, Zhang Y, Xu W, Südhof TC. CSPalpha knockout causes neurodegeneration by impairing SNAP-25 function. EMBO J. 2012;31:829–41. https://doi.org/10.1038/emboj.2011.467.
Article
CAS
PubMed
Google Scholar
Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES, Peltonen L. CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet. 1998;19:286–8. https://doi.org/10.1038/975.
Article
CAS
PubMed
Google Scholar
Pineda-Trujillo N, Cornejo W, Carrizosa J, Wheeler RB, Munera S, Valencia A, et al. A CLN5 mutation causing an atypical neuronal ceroid lipofuscinosis of juvenile onset. Neurology. 2005;64:740–2. https://doi.org/10.1212/01.WNL.0000151974.44980.F1.
Article
CAS
PubMed
Google Scholar
Schmiedt ML, Blom T, Blom T, Kopra O, Wong A, von Schantz-Fant C, et al. Cln5-deficiency in mice leads to microglial activation, defective myelination and changes in lipid metabolism. Neurobiol Dis. 2012;46:19–29. https://doi.org/10.1016/j.nbd.2011.12.009.
Article
CAS
PubMed
Google Scholar
Isosomppi J, Vesa J, Jalanko A, Peltonen L. Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein. Hum Mol Genet. 2002;11:885–91. https://doi.org/10.1093/hmg/11.8.885.
Article
CAS
PubMed
Google Scholar
Lyly A, Von Schantz C, Heine C, Schmiedt ML, Sipilä T, Jalanko A, et al. Novel interactions of CLN5 support molecular networking between Neuronal Ceroid Lipofuscinosis proteins. BMC Cell Biol. 2009;10:83. https://doi.org/10.1186/1471-2121-10-83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mamo A, Jules F, Dumaresq-Doiron K, Costantino S, Lefrancois S. The role of ceroid lipofuscinosis neuronal protein 5 (CLN5) in endosomal sorting. Mol Cell Biol. 2012;32:1855–66. https://doi.org/10.1128/MCB.06726-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Markmann S, Thelen M, Cornils K, Schweizer M, Brocke N, Willnow T, et al. Lrp1/LDL receptor play critical roles in mannose 6-phosphate-independent lysosomal enzyme targeting. Traffic. 2015;16:743–59. https://doi.org/10.1111/tra.12284.
Article
CAS
PubMed
Google Scholar
Gao H, Boustany RM, Espinola JA, Cotman SL, Srinidhi L, Antonellis KA, et al. Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet. 2002;70:324–235. https://doi.org/10.1086/338190.
Article
CAS
PubMed
Google Scholar
Heine C, Quitsch A, Storch S, Martin Y, Lonka L, Lehesjoki AE, et al. Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Mol Membr Biol. 2007;24:74–87. https://doi.org/10.1080/09687860600967317.
Article
CAS
PubMed
Google Scholar
Mole SE, Michaux G, Codlin S, Wheeler RB, Sharp JD, Cutler DF. CLN6, which is associated with a lysosomal storage disease, is an endoplasmic reticulum protein. Exp Cell Res. 2004;298:399–406. https://doi.org/10.1016/j.yexcr.2004.04.042.
Article
CAS
PubMed
Google Scholar
Alroy J, T. Braulke, IA, Cismondi JD, Cooper D, Creegan et al. S. Mole, R. Williams, H. Goebel (Eds.), Cln6. The Neuronal Ceroid Lipofuscinoses (Batten Disease), 2nd ed., Oxford University Press, 2011; pp. 159-175.
Holopainen JM, Saarikoski J, Kinnunen PK, Järvelä IE. Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). Eur J Biochem. 2001;268:5851–6. https://doi.org/10.1046/j.0014-2956.2001.02530.x.
Article
CAS
PubMed
Google Scholar
Thelen M, Damme M, Schweizer M, Hagel C, Wong AM, Cooper JD, et al. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis. PLoS One. 2012;7:e35493. https://doi.org/10.1371/journal.pone.0035493.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sleat DE, Lackland H, Wang Y, Sohar I, Xiao G, Li H, et al. The human brain mannose 6-phosphate glycoproteome: a complex mixture composed of multiple isoforms of many soluble lysosomal proteins. Proteomics. 2005;5:1520–32. https://doi.org/10.1002/pmic.200401054.
Article
PubMed
Google Scholar
Bolognin S, Messori L, Zatta P. Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med. 2009;11:223–38. https://doi.org/10.1007/s12017-009-8102-1.
Article
CAS
PubMed
Google Scholar
Kanninen KM, Grubman A, Meyerowitz J, Duncan C, Tan JL, Parker SJ, et al. Increased zinc and manganese in parallel with neurodegeneration, synaptic protein changes and activation of Akt/GSK3 signaling in ovine CLN6 neuronal ceroid lipofuscinosis. PLoS One. 2013;8:e58644. https://doi.org/10.1371/journal.pone.0058644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aiello C, Terracciano A, Simonati A, Discepoli G, Cannelli N, Claps D, et al. Mutations in MFSD8/CLN7 are a frequent cause of variant-late infantile neuronal ceroid lipofuscinosis. Hum Mut. 2009;30:E530–40. https://doi.org/10.1002/humu.20975.
Article
PubMed
Google Scholar
Sharifi A, Kousi M, Sagné C, Bellenchi GC, Morel L, Darmon M, et al. Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 2010;19:4497–514. https://doi.org/10.1093/hmg/ddq381.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schröder B, Wrocklage C, Pan C, Jäger R, Kösters B, Schäfer H, et al. Integral and associated lysosomal membrane proteins. Traffic. 2007;8:1676–86. https://doi.org/10.1111/j.1600-0854.2007.00643.x.
Article
CAS
PubMed
Google Scholar
Steenhuis P, Herder S, Gelis S, Braulke T, Storch S. Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif. Traffic. 2010;11:987–1000. https://doi.org/10.1111/j.1600-0854.2010.01073.x.
Article
CAS
PubMed
Google Scholar
Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum Mol Genet. 2016;25:777–91. https://doi.org/10.1093/hmg/ddv615.
Article
CAS
PubMed
Google Scholar
Danyukova T, Ariunbat K, Thelen M, Brocke-Ahmadinejad N, Mole SE, Storch S. Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation. Hum Mol Genet. 2018;19:4497–514. https://doi.org/10.1093/hmg/ddy076.
Article
CAS
Google Scholar
Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A, et al. The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet. 1999;23:233–6. https://doi.org/10.1038/13868.
Article
CAS
PubMed
Google Scholar
Lonka L, Kyttälä A, Ranta S, Jalanko A, Lehesjoki AE. The neuronal ceroid lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum. Hum Mol Genet. 2000;9:1691–7. https://doi.org/10.1074/jbc.M400643200.
Article
CAS
PubMed
Google Scholar
Messer A, Plummer J, MacMillen MC, Frankel WN. Genetics of primary and timing effects in the mnd mouse. Am J Med Genet. 1995;57:361–4. https://doi.org/10.1002/ajmg.1320570251.
Article
CAS
PubMed
Google Scholar
Lonka L, Aalto A, Kopra O, Kuronen M, Kokaia Z, Saarma M, et al. The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy. BMC Neurosci. 2005;6:27. https://doi.org/10.1186/1471-2202-6-27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haddad SE, Khoury M, Daoud M, Kantar R, Harati H, Mousallem T, et al. CLN5 and CLN8 protein association with ceramide synthase: biochemical and proteomic approaches. Electrophoresis. 2012;33:3798–809. https://doi.org/10.1002/elps.201200472.
Article
CAS
PubMed
Google Scholar
Hermansson M, Käkelä R, Berghäll M, Lehesjoki AE, Somerharju P, Lahtinen U. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J Neurochem. 2005;95:609–17. https://doi.org/10.1111/j.1471-4159.2005.03376.x.
Article
CAS
PubMed
Google Scholar
Zhang CK, Stein PB, Liu J, Wang Z, Yang R, Cho JH, et al. Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am J Hematol. 2012;87:377–83. https://doi.org/10.1002/ajh.23118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galizzi G, Russo D, Deidda I, Cascio C, Passantino R, Guarneri R, et al. Different early ER-stress responses in the CLN8(mnd) mouse model of neuronal ceroid lipofuscinosis. Neurosci Lett. 2011;488:258–62. https://doi.org/10.1016/j.neulet.2010.11.041.
Article
CAS
PubMed
Google Scholar
Guarneri R, Russo D, Cascio C, D’Agostino S, Galizzi G, Bigini G, et al. Retinal oxidation, apoptosis and age- and sex-differences in the mnd mutant mouse, a model of neuronal ceroid lipofuscinosis. Brain Res. 2004;1014:209–20. https://doi.org/10.1016/j.brainres.2004.04.040.
Article
CAS
PubMed
Google Scholar
Kolikova J, Afzalov R, Surin A, Lehesjoki AE, Khiroug L. Deficient mitochondrial Ca2 + buffering in the Cln8(mnd) mouse model of neuronal ceroid lipofuscinosis. Cell Calcium. 2011;50:491–501. https://doi.org/10.1016/j.ceca.2011.08.004.
Article
CAS
PubMed
Google Scholar
di Ronza A, Bajaj L, Sharma J, Sanagasetti D, Lotfi P, Adamski CJ, et al. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat Cell Biol. 2018. https://doi.org/10.1038/s41556-018-0228-7.
Siintola E, Partanen S, Strömme P, Haapanen A, Haltia M, Maehlen J, et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129:1438–45. https://doi.org/10.1093/brain/awl107.
Article
PubMed
Google Scholar
Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78:988–98. https://doi.org/10.1086/504159.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benes P, Vetvicka V, Fusek M. Cathepsin D-Many functions of one aspartic protease. Crit Rev Oncol Hematol. 2008;68:12–28. https://doi.org/10.1016/j.critrevonc.2008.02.008.
Article
PubMed
PubMed Central
Google Scholar
Sevlever D, Jiang P, Yen SH. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry. 2008;47:9678–87. https://doi.org/10.1021/bi800699v.
Article
CAS
PubMed
Google Scholar
Doccini S, Sartori S, Maeser S, Pezzini F, Rossato S, Moro F, et al. Early infantile neuronal ceroid lipofuscinosis (CLN10 disease) associated with a novel mutation in CTSD. J Neurol. 2016;263:1029–32. https://doi.org/10.1007/s00415-016-8111-6.
Article
PubMed
Google Scholar
Mole SE, Williams RE. In: Pagon RA, Bird TD, Dolan CR, Stephens K, editors. Neuronal ceroid-lipofuscinoses. Seattle: Gene Reviews; 1993.
Google Scholar
Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, et al. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 2000;19:2786–92. https://doi.org/10.1093/emboj/19.12.2786.
Article
CAS
PubMed
PubMed Central
Google Scholar
Awano T, Katz ML, O’Brien DP, Taylor JF, Evans J, Khan S, et al. A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis. Molecular Genetics and Metabolism. 2006;87:341–8. https://doi.org/10.1016/j.ymgme.2005.11.005.
Article
CAS
PubMed
Google Scholar
Zaidi N, Maurer A, Nieke S, Kalbacher H. Cathepsin D: a cellular roadmap. Biochem Biophys Res Commun. 2008;376:5–9. https://doi.org/10.1016/j.bbrc.2008.08.099.
Article
CAS
PubMed
Google Scholar
Cunningham M, Tang J. Purification and properties of cathepsin D from porcine spleen. J Biol Chem. 1976;251:4528–36.
CAS
PubMed
Google Scholar
Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull. 2012;88:43–57. https://doi.org/10.1016/j.brainresbull.2012.03.003.
Article
CAS
PubMed
Google Scholar
Myllykangas L, Tyynelä J, Page-McCaw A, Rubin GM, Haltia MJ, Feany MB. Cathepsin D-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses. Neurobiol Dis. 2005;19:194–9. https://doi.org/10.1016/j.nbd.2004.12.019.
Article
CAS
PubMed
Google Scholar
Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci. 2000;20:6898–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 1995;14:3599–608 PMID: 7641679.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandra G, Bagh MB, Peng S, Saha A, Sarkar C, Moralle M, et al. Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders. Hum Mol Genet. 2015;24:5416–32. https://doi.org/10.1093/hmg/ddv266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90:1102–7. https://doi.org/10.1016/j.ajhg.2012.04.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916–9. https://doi.org/10.1038/nature05016.
Article
CAS
PubMed
Google Scholar
Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920-924. https:// https://doi.org/10.1038/nature05017
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3. https://doi.org/10.1126/science.1134108.
Article
CAS
PubMed
Google Scholar
Kao AW, Mckay A, Singh PP, Brunet HEJ. Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci. 2017;18:325–33. https://doi.org/10.1038/nrn.2017.36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med. 2017; 9:pii: eaah5642. https://doi.org/10.1126/scitranslmed.aah5642.
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47. https://doi.org/10.1523/JNEUROSCI.1860-14.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petoukhov E, Fernando S, Mills F, Shivji F, Hunter D, Krieger C, et al. Activity-dependent secretion of progranulin from synapses. J. Cell Sci. 2013;126:5412–21. https://doi.org/10.1242/jcs.132076.
Article
CAS
PubMed
Google Scholar
Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, et al. Progranulin deficiency promotes circuit- specific synaptic pruning by microglia via complement activation. Cell. 2016;165:921–35. https://doi.org/10.1016/j.cell.2016.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu F. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010;68:654. https://doi.org/10.1016/j.neuron.2010.09.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011;332(6028):478–84. https://doi.org/10.1126/science.1199214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neill T, Buraschi S, Goyal A, Sharpe C, Natkanski E, Schaefer L, et al. EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol. 2016;215:687–703. https://doi.org/10.1083/jcb.201603079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004;427:843–8. https://doi.org/10.1038/nature02319.
Article
CAS
PubMed
Google Scholar
Park B, Buti L, Lee S, Matsuwaki T, Spooner E, Brinkmann MM, et al. Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity. 2011;34:505–13. https://doi.org/10.1016/j.immuni.2011.01.018.
Article
CAS
PubMed
Google Scholar
Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M. Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Neuroscience. 2013;250:8–19. https://doi.org/10.1016/j.neuroscience.2013.06.049.
Article
CAS
PubMed
Google Scholar
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5:ra42. https://doi.org/10.1126/scisignal.2002790.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evers BM, Rodriguez-Navas C, Tesla RJ, Prange-Kiel J, Wasser CR, Yoo KS, et al. Lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency. Cell Rep. 2017;20:2565–74. https://doi.org/10.1016/j.celrep.2017.08.056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paushter DH, Du H, Feng T, Hu F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 2018;136:1–17. https://doi.org/10.1007/s00401-018-1861-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 2006;38:1184–91. https://doi.org/10.1038/ng1884.
Article
CAS
PubMed
Google Scholar
Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21:2646–50. https://doi.org/10.1093/hmg/dds089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Usenovic M, Tress E, Mazzulli JR, Taylor JP, Krainc D. Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity. J Neurosci. 2012;32:4240–6. https://doi.org/10.1523/JNEUROSCI.5575-11.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA, Yue Z, et al. Lysosomal impairment in Parkinson's disease. Mov Disord. 2013;28:725–32. https://doi.org/10.1002/mds.25462.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Q, Guo H, Zhang X, Tang B, Cai F, Zhou W, et al. Hypoxia regulation of ATP13A2 (PARK9) gene transcription. J Neurochem. 2012;122:251–9. https://doi.org/10.1111/j.1471-4159.2012.07676.x.
Article
CAS
PubMed
Google Scholar
Kong SM, Chan BK, Park JS, Hill KJ, Aitken JB, Cottle L, et al. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Hum Mol Genet. 2014;23:2816–33. https://doi.org/10.1093/hmg/ddu099.
Article
CAS
PubMed
Google Scholar
Van Veen S, Sørensen DM, Holemans T, Holen HW, Palmgren MG, Vangheluwe P. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders. Front Mol Neurosci. 2014;7:48–60. https://doi.org/10.3389/fnmol.2014.00048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang CH, Lee JW, Galvez MG, Robillard L, Mole SE, Chapman HA. Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol Cell Biol. 2006;26:2309–16. https://doi.org/10.1128/MCB.26.6.2309-2316.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith KR, Dahl HH, Canafoglia L, Andermann E, Damiano J, Morbin M, et al. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 2013;22:1417–23. https://doi.org/10.1093/hmg/dds558.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Zee J, Mariën P, Crols R, Van Mossevelde S, Dillen L, Perrone F, et al. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD. Neurol Genet. 2016;2:e102. https://doi.org/10.1212/NXG.0000000000000102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahwan A, Farrell M, Delanty N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol. 2005;4:239–48. https://doi.org/10.1016/S1474-4422(05)70043-0.
Article
CAS
PubMed
Google Scholar
Wang B, Shi GP, Yao PM, Li Z, Chapman HA, Brömme D. Human cathepsin F. Molecular cloning, functional expression, tissue localization and enzymatic characterization. J Biol Chem. 1998;273:32000–8.
Article
CAS
PubMed
Google Scholar
Krabichler B, Rostasy K, Baumann M, Karall D, Scholl-Burgi S, Schwarzer C, et al. Novel mutation in potassium channel related gene KCTD7 and progressive myoclonic epilepsy. Ann Hum Genet. 2012;76:326–31. https://doi.org/10.1111/j.1469-1809.2012.00710.x.
Article
CAS
PubMed
Google Scholar
Van Bogaert P, Azizieh R, Desir J, Aeby A, De Meirleir L, Laes JF, et al. Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol. 2007;61:579–86. https://doi.org/10.1002/ana.21121.
Article
CAS
PubMed
Google Scholar
Fritzius T, Turecek R, Seddik R, Kobayashi H, Tiao J, Rem PD, et al. KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. J Neurosci. 2017;37:1162–75. https://doi.org/10.1523/JNEUROSCI.2181-16.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staropoli JF, Karaa A, Lim ET, Kirby A, Elbalalesy N, Romansky SG, et al. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet. 2012;91:202–8. https://doi.org/10.1016/j.ajhg.2012.05.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, et al. Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Biochem J. 2017;474:3747–61. https://doi.org/10.1042/BCJ20170527.
Article
CAS
PubMed
Google Scholar
Lim CY, Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 2016;214:653–64. https://doi.org/10.4161/auto.19469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perera RM, Zoncu R. The lysosome as a regulatory Hub. Annu Rev Cell Dev Biol. 2016;32:223–53. https://doi.org/10.1146/annurev-cellbio-11315-125125.
Article
CAS
PubMed
Google Scholar
Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 2017;45:72–82. https://doi.org/10.1016/j.ceb.2017.02.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Settembre C, Medina DL. TFEB and the CLEAR network. Methods Cell Biol. 2015;126:45–62. https://doi.org/10.1016/bs.mcb.2014.11.011.
Article
PubMed
Google Scholar
Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci. 2013;37:1949–61. https://doi.org/10.1111/ejn.12169.
Article
PubMed
PubMed Central
Google Scholar
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011;334:678–83. https://doi.org/10.1126/science.1207056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong CO, Palmieri M, Li J, Akhmedov D, Chao Y, Broadhead GT, et al. Diminished mTORC1-dependent JNK activation underlies the neurodevelopmental defects associated with lysosomal dysfunction. Cell Reports. 2015;12:2009–20. https://doi.org/10.1016/j.celrep.2015.08.047.
Article
CAS
PubMed
Google Scholar
Wei H, Zhang Z, Saha A, Peng S, Chandra G, Quezado Z, et al. Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: partial rescue by resveratrol. Hum Mol Genet. 2011;20:1111–21. https://doi.org/10.1093/hmg/ddq555.
Article
CAS
PubMed
Google Scholar
Hughes AL, Gottschling DE. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature. 2012;492:261–5. https://doi.org/10.1038/nature11654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Butler JD, Levin SW, Wisniewski KE, Brooks SS, Mukherjee AB. Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat Med. 2001;7:478–84 PMID:11283676.
Article
CAS
PubMed
Google Scholar
Levin SW, Baker EH, Zein WM, Zhang Z, Quezado ZM, Miao N, et al. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: a pilot study. Lancet Neurol. 2014;13:777–87. https://doi.org/10.1016/S1474-4422(14)70142-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar C, Chandra G, Peng S, Zhang Z, Liu A, Mukherjee AB. Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. Nat Neurosci. 2013;16:1608–17. https://doi.org/10.1038/nn.3526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447(7140):87–91. https://doi.org/10.1038/nature05756.
Article
PubMed
Google Scholar
Sarkar C, Zhang Z, Mukherjee AB. Stop codon read-through with PTC124 induces palmitoyl-protein thioesterases-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Mol Genet Metab. 2011;104:338–45. https://doi.org/10.1016/j.ymgme.2011.05.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller JN, Chan CH, Pearce DA. The role of nonsense-mediated decay in neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22:2723–34. https://doi.org/10.1093/hmg/ddt120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouchelion A, Zhang Z, Li Y, Qian H, Mukherjee AB. Mice homozygous for c451C>T mutation in Cln1 gene recapitulate INCL phenotype. Ann Clin Transl Neurol. 2014;1:1006–23. https://doi.org/10.1002/acn3.144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu JY, Hu J, Hofmann SL. Human recombinant pamitoyl-protein thioesterases-1 (PPT1) for preclinical evaluation of enzyme replacement therapy for infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2010;99:374–8. https://doi.org/10.1016/j.ymgme.2009.12.002.
Article
CAS
PubMed
Google Scholar
Dearborn JT, Ramachandran S, Shyng C, Lu JY, Thornton J, Hofmann SL, et al. Histochemical localization of palmitoyl protein thioesterases-1 activity. Mol Genet Metab. 2016;117:210–6. https://doi.org/10.1016/j.ymgme.2015.11.004.
Article
CAS
PubMed
Google Scholar
Galliani M, Santi M, Del Grosso A, Cecchettini A, Santorelli FM, Hofmann SL, et al. Crosslinked enzyme aggregates as versatile tool for enzyme delivery: Application to polymeric nanoparticles. Bioconjug Chem. 2018. https://doi.org/10.1021/acs.bioconjchem.8b00206.
Macauley SL, Wong AM, Shyng C, Augner DP, Dearborn JT, Pearse Y, et al. An anti-neuroinflammatory that targets dysregulated glia enhances the efficacy of CNS-directed gene therapy in murine infantile neuronal ceroid lipofuscinosis. J Neurosci. 2014;34:13077–82. https://doi.org/10.1523/JNEUROSCI.2518-14.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shyng C, Nelvagal HR, Dearborn JT, Tyynelä J, Schmidt RE, Sands MS, et al. Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci U S A. 2017;114:E5920–9. https://doi.org/10.1073/pnas.1701832114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis. 2018;115:182–93. https://doi.org/10.1016/j.nbd.2018.04.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong AM, Rahim AA, Waddington SN, Cooper JD. Current therapies for the soluble lysosomal forms of neuronal ceroid lipofuscinosis. Biochem Soc Trans. 2010;38:1484–8. https://doi.org/10.1042/BST0381484.
Article
CAS
PubMed
Google Scholar
Hawkins-Salsbury JA, Cooper JD, Sands MS. Pathogenesis and therapies for infantile neuronal ceroid lipofuscinosis (infantile CLN1 disease). Biochim Biophys Acta. 2013;1832(11):1906–9. https://doi.org/10.1016/j.bbadis.2013.05.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotman SL, Mole SE, Kohan R. Future perspectives: Moving towards NCL treatments. Biochim Biophys Acta. 1852;2015:2336–8. https://doi.org/10.1016/j.bbadis.2015.04.001.
Article
CAS
Google Scholar
Neverman NJ, Best HL, Hofmann SL, Hughes SM. Experimental therapies in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta. 2015;1852:2292–300. https://doi.org/10.1016/j.bbadis.2015.04.026.
Article
CAS
PubMed
Google Scholar
Kleine Holthaus SM, Smith AJ, Mole SE, Ali RR. Gene therapy approaches to treat the neurodegeneration and visual failure in neuronal ceroid lipofuscinoses. Adv Exp Med Biol. 2018;1074:91–9. https://doi.org/10.1007/978-3-319-75402-4_12.
Article
PubMed
Google Scholar
Schulz A, Ajayi T, Specchio N, de Los RE, Gissen P, Ballon D, et al. CLN2 Study Group. Study of intraventricular cerliponase Alfa for CLN2 disease. N Engl J Med. 2018;378:1898–907. https://doi.org/10.1056/NEJMoa1712649.
Article
CAS
PubMed
Google Scholar
Kinarivala N, Trippier PC. Progress in the development of small molecule therapeutics for the treatment of neuronal ceroid lipofuscinoses (NCLs). J Med Chem. 2016;59:4415–27. https://doi.org/10.1021/acs.jmedchem.5b01020.
Article
CAS
PubMed
Google Scholar
Bond M, Holthaus SM, Tammen I, Tear G, Russell C. Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2013;1832:1842–65. https://doi.org/10.1016/j.bbadis.2013.01.009.
Article
CAS
PubMed
Google Scholar