Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M. World Alzheimer Report 2015: The Global Impact of Dementia. Alzheimer’s Disease International. 2015.
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6(4):487–98.
Article
CAS
PubMed
Google Scholar
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329–44.
Article
CAS
PubMed
Google Scholar
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148(6):1204–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63(3):287–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron. 2014;81(4):740–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72:3–12.
Article
CAS
PubMed
Google Scholar
Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med. 1996;47:387–400.
Article
CAS
PubMed
Google Scholar
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.
Article
CAS
PubMed
Google Scholar
Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA J Am Med Assoc. 1997;278(16):1349–56.
Article
CAS
Google Scholar
Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med. 2016;94(7):739–46.
Article
CAS
PubMed
Google Scholar
Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103(15):5644–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatters DM, Peters-Libeu CA, Weisgraber KH. Apolipoprotein E structure: insights into function. Trends Biochem Sci. 2006;31(8):445–54.
Article
CAS
PubMed
Google Scholar
Frieden C, Garai K. Structural differences between apoE3 and apoE4 may be useful in developing therapeutic agents for Alzheimer’s disease. Proc Natl Acad Sci. 2012;109(28):E1972–9.
Article
Google Scholar
Chen J, Li Q, Wang J. Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci. 2011;108(36):14813–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatters DM, Budamagunta MS, Voss JC, Weisgraber KH. Modulation of apolipoprotein E structure by domain interaction: differences in lipid-bound and lipid-free forms. J Biol Chem. 2005;280(40):34288–95.
Article
CAS
PubMed
Google Scholar
Xu Q, Brecht WJ, Weisgraber KH, Mahley RW, Huang Y. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer. J Biol Chem. 2004;279(24):25511–6.
Article
CAS
PubMed
Google Scholar
Brecht WJ, Harris FM, Chang S, Tesseur I, Yu G-Q, Xu Q, et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci. 2004;24(10):2527–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y. Aβ-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease. Trends Mol Med. 2010;16(6):287–94.
Article
CAS
PubMed
Google Scholar
Mahley RW, Huang Y. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron. 2012;76(5):871–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grehan S, Tse E, Taylor JM. Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci. 2001;21(3):812–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1987;917(1):148–61.
Article
CAS
Google Scholar
Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci. 2006;26(19):4985–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu PT, Schmechel D, Rothrock-Christian T, Burkhart DS, Qiu HL, Popko B, et al. Human apolipoprotein E2, E3, and E4 isoform-specific transgenic mice: human-like pattern of glial and neuronal immunoreactivity in central nervous system not observed in wild-type mice. Neurobiol Dis. 1996;3(3):229–45.
Article
CAS
PubMed
Google Scholar
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol. 2018. https://doi.org/10.1038/s41577-018-0051-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Weisgraber KH, Mucke L, Mahley RW. Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci. 2004;23(3):189–204.
Article
CAS
PubMed
Google Scholar
Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci. 1999;96(26):15233–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2000;97(6):2892–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat Med. 2004;10(7):719–26.
Article
CAS
PubMed
Google Scholar
Castellano JM, Kim J, Stewart FR, Jiang H, Demattos RB, Patterson BW, et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. 2011;3(89):89ra57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golabek AA, Soto C, Vogel T, Wisniewski T. The interaction between apolipoprotein E and Alzheimer’s amyloid β-peptide is dependent on β-peptide conformation. J Biol Chem. 1996;271(18):10602–6.
Article
CAS
PubMed
Google Scholar
Hatters DM, Zhong N, Rutenber E, Weisgraber KH. Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J Mol Biol. 2006;361(5):932–44.
Article
CAS
PubMed
Google Scholar
Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, et al. Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J Neurosci. 2009;29(21):6771–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26(40):10129–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, et al. APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem. 2012;287(50):41774–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatami A, Monjazeb S, Milton S, Glabe CG. Familial Alzheimer’s disease mutations within the amyloid precursor protein Alter the aggregation and conformation of the amyloid-β peptide. J Biol Chem. 2017;292(8):3172–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bien-Ly N, Gillespie AK, Walker D, Yoon SY, Huang Y. Reducing human apolipoprotein E levels attenuates age-dependent Aβ accumulation in mutant human amyloid precursor protein transgenic mice. J Neurosci. 2012;32(14):4803–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Jiang H, Park S, Eltorai AEM, Stewart FR, Yoon H, et al. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J Neurosci. 2011;31(49):18007–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irizarry MC, Rebeck GW, Cheung B, Bales K, Paul SM, Holzman D, et al. Modulation of Aβ deposition in APP transgenic mice by an apolipoprotein E null background. Ann N Y Acad Sci. 2000;920:171–8.
Article
CAS
PubMed
Google Scholar
Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, et al. Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer’s disease. J Clin Invest. 1999;103(6):R15–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM, et al. Human apolipoprotein E4 alters the amyloid-β 40:42 ratio and promotes the formation of cerebral amyloid Angiopathy in an amyloid precursor protein transgenic model. J Neurosci. 2005;25(11):2803–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harper JD, Lansbury PT. Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 1997;66:385–407.
Article
CAS
PubMed
Google Scholar
Wood SJ, Chan W, Wetzel R. An ApoE-Aβ inhibition complex in Aβ fibril extension. Chem Biol. 1996;3(11):949–56.
Article
CAS
PubMed
Google Scholar
Hashimoto T, Serrano-Pozo A, Hori Y, Adams KW, Takeda S, Banerji AO, et al. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide. J Neurosci. 2012;32(43):15181–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerf E, Gustot A, Goormaghtigh E, Ruysschaert J-M, Raussens V. High ability of apolipoprotein E4 to stabilize amyloid-β peptide oligomers, the pathological entities responsible for Alzheimer’s disease. FASEB J. 2011;25(5):1585–95.
Article
CAS
PubMed
Google Scholar
Naiki H, Gejyo F, Nakakuki K. Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s β-amyloid fibril formation in vitro. Biochemistry. 1997;36(20):6243–50.
Article
CAS
PubMed
Google Scholar
Cramer PE, Cirrito JR, Wesson DW, Lee CYD, Karlo JC, Zinn AE, et al. ApoE-directed therapeutics rapidly clear β -amyloid and reverse deficits in AD mouse models. Science. 2012;335(6075):1503–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, et al. The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci. 2007;34(4):621–8.
Article
CAS
PubMed
Google Scholar
Terwel D, Steffensen KR, Verghese PB, Kummer MP, Gustafsson J-A, Holtzman DM, et al. Critical role of Astroglial apolipoprotein E and liver X receptor-alpha expression for microglial Aβ phagocytosis. J Neurosci. 2011;31(19):7049–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Eltorai AEM, Jiang H, Liao F, Verghese PB, Kim J, et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J Exp Med. 2012;209(12):2149–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vincent B, Smith JD. Astrocytes down-regulate neuronal β-amyloid precursor protein expression and modify its processing in an apolipoprotein E isoform-specific manner. Eur J Neurosci. 2001;14(2):256–66.
Article
CAS
PubMed
Google Scholar
Liu C-C, Zhao N, Fu Y, Wang N, Linares C, Tsai C-W, et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron. 2017;96(5):1024–1032.e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huynh T-PV, Liao F, Francis CM, Robinson GO, Serrano JR, Jiang H, et al. Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron. 2017;96(5):1013–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irizarry MC, Deng A, Lleo A, Berezovska O, von Arnim CAF, Martin-Rehrmann M, et al. Apolipoprotein E modulates γ-secretase cleavage of the amyloid precursor protein. J Neurochem. 2004;90(5):1132–43.
Article
CAS
PubMed
Google Scholar
Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, et al. apoE isoform – specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest. 2008;118(12):4002–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C-C, Hu J, Zhao N, Wang J, Wang N, Cirrito JR, et al. Astrocytic LRP1 mediates brain Aβ clearance and impacts amyloid deposition. J Neurosci. 2017;37(15):4023–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Q, Zhao Z, Sagare AP, Wu Y, Wang M, Owens NC, et al. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener. 2018;13(1):57.
Article
PubMed
PubMed Central
Google Scholar
Prasad H, Rao R. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci. 2018;115(28):E6640–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Wang C, Huang Y. C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-β(Aβ) and acts in concert with Aβ to elicit neuronal and behavioral deficits in mice. Proc Natl Acad Sci U S A. 2011;108(10):4236–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baitsch D, Bock HH, Engel T, Telgmann R, Müller-Tidow C, Varga G, et al. Apolipoprotein E induces Antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1160–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Nwabuisi-Heath E, Dumanis SB, Tai LM, Yu C, Rebeck GW, et al. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia. 2012;60(4):559–69.
Article
PubMed
PubMed Central
Google Scholar
Cudaback E, Li X, Montine KS, Montine TJ, Keene CD. Apolipoprotein E isoform-dependent microglia migration. FASEB J. 2011;25(6):2082–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer's Disease. Front Aging Neurosci. 2019. https://doi.org/10.3389/fnagi.2019.00014.
Kanekiyo T, Cirrito JR, Liu C-C, Shinohara M, Li J, Schuler DR, et al. Neuronal clearance of amyloid-β by endocytic receptor LRP1. J Neurosci. 2013;33(49):19276–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannakopoulos P, Herrmann FR, Bussière T, Bouras C, Kövari E, Perl DP, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003;60(9):1495–500.
Article
CAS
PubMed
Google Scholar
Raber J, Wong D, Buttini M, Orth M, Bellosta S, Pitas RE, et al. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci U S A. 1998;95(18):10914–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raber J, Wong D, Yu G-Q, Buttini M, Mahley R, Pitas R, et al. Apolipoprotein E and cognitive performance. Nature. 2000;404(6776):352–4.
Article
CAS
PubMed
Google Scholar
Leung L, Andrews-Zwilling Y, Yoon SY, Jain S, Ring K, Dai J, et al. Apolipoprotein E4 causes age- and sex-dependent impairments of hilar GABAergic interneurons and learning and memory deficits in mice. PLoS One. 2012;7(12):e53569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A, Yoon SY, et al. Apolipoprotein E4 causes age- and tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci. 2010;30(41):13707–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodbeck J, McGuire J, Liu Z, Meyer-Franke A, Balestra ME, Jeong DE, et al. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by Small-molecule structure correctors. J Biol Chem. 2011;286(19):17217–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH, Ladu MJ, et al. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci. 2009;29(48):15317–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Ring K, et al. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 Knockin mice. Cell Stem Cell. 2009;5(6):634–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw P, Lerch JP, Pruessner JC, Taylor KN, Rose AB, Greenstein D, et al. Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol. 2007;6(6):494–500.
Article
CAS
PubMed
Google Scholar
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960–9.
Article
CAS
PubMed
Google Scholar
Uddin MS, Kabir MT, Al Mamun A, Abdel-Daim MM, Barreto GE, Ashraf GM. APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol. 2018. https://doi.org/10.1007/s12035-018-1237-z.
Article
PubMed
CAS
Google Scholar
Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci. 2001;98(15):8838–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L, Wyss-Coray T, et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A. 2003;100:10966–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao N, Liu C-C, Van Ingelgom AJ, Linares C, Kurti A, Knight JA, et al. APOE ε2 is associated with increased tau pathology in primary tauopathy. Nat Commun. 2018;9(1):4388.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci. 2018;21(10):1350–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramamoorthi K, Lin Y. The contribution of GABAergic dysfunction to neurodevelopmental disorders. Trends Mol Med. 2011;17(8):452–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Govindpani K, Calvo-Flores Guzmán B, Vinnakota C, Waldvogel H, Faull R, Kwakowsky A, et al. Towards a better understanding of GABAergic remodeling in Alzheimer’s disease. Int J Mol Sci. 2017;18(8):1813.
Article
PubMed Central
CAS
Google Scholar
Lanctôt KL, Herrmann N, Mazzotta P, Khan LR, Ingber N. GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of Behavioural and psychological symptoms of dementia. Can J Psychiatr. 2016;49(7):439–53.
Article
Google Scholar
Garcia-Marin V, Blazquez-Llorca L, Rodriguez J-R, Boluda S, Muntane G, Ferrer I, et al. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front Neuroanat. 2009;3:28.
Article
PubMed
PubMed Central
Google Scholar
Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P, et al. Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener. 2015;10:65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soricelli A, Postiglione A, Grivet-Fojaja MR, Mainenti PP, Discepolo A, Varrone A, et al. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer’s disease as a measure of loss of synapses. Eur J Nucl Med. 1996;23(10):1323–8.
Article
CAS
PubMed
Google Scholar
Fukuchi K, Hashikawa K, Seike Y, Moriwaki H, Oku N, Ishida M, et al. Comparison of iodine-123-iomazenil SPECT and technetium-99m-HMPAO-SPECT in Alzheimer’s disease. J Nucl Med. 1997;38(3):467–70.
CAS
PubMed
Google Scholar
Bareggi SR, Franceschi M, Bonini L, Zecca L, Smirne S. Decreased CSF concentrations of Homovanillic acid and γ-aminobutyric acid in Alzheimer’s disease. Age- or disease-related modifications? Arch Neurol. 1982;39(11):709.
Article
CAS
PubMed
Google Scholar
Zimmer R, Teelken AW, Trieling WB, Weber W, Weihmayr T, Lauter H. γ-aminobutyric acid and Homovanillic acid concentration in the CSF of patients with senile dementia of Alzheimer’s type. Arch Neurol. 1984;41(6):602–4.
Article
CAS
PubMed
Google Scholar
Manyam NV, Katz L, Hare TA, Gerber JC, Grossman MH. Levels of γ-aminobutyric acid in cerebrospinal fluid in various neurologic disorders. Arch Neurol. 1980;37(6):352–5.
Article
CAS
PubMed
Google Scholar
Enna SJ, Stern LZ, Wastek GJ, Yamamura HI. Cerebrospinal fluid γ-aminobutyric acid variations in neurological disorders. Arch Neurol. 1977;34(11):683–5.
Article
CAS
PubMed
Google Scholar
Davies P, Katzman R, Terry RD. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature. 1980;288(5788):279–80.
Article
CAS
PubMed
Google Scholar
Chan-Palay V. Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia. J Comp Neurol. 1987;260(2):201–23.
Article
CAS
PubMed
Google Scholar
Palmer AM, Gershon S. Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic ? Faseb. 1990;4(10):2745–52.
Article
CAS
Google Scholar
Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001;42(SUPPL. 3):8–12.
Article
PubMed
Google Scholar
Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol. 2009;66(4):435–40.
Article
PubMed
PubMed Central
Google Scholar
Palop JJ, Mucke L. Amyloid-β-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13(7):812–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013;70(9):1158–66.
Article
PubMed
PubMed Central
Google Scholar
Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55(5):697–711.
Article
CAS
PubMed
PubMed Central
Google Scholar
DiFrancesco JC, Tremolizzo L, Polonia V, Giussani G, Bianchi E, Franchi C, et al. Adult-onset epilepsy in Presymptomatic Alzheimer’s disease: a retrospective study. J Alzheimers Dis. 2017;60(4):1267–74.
Article
CAS
PubMed
Google Scholar
Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci. 2012;109(42):E2895–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi J-Q, Wang B-R, Tian Y-Y, Xu J, Gao L, Zhao S-L, et al. Antiepileptics Topiramate and Levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther. 2013;19(11):871–81.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koh MT, Haberman RP, Foti S, McCown TJ, Gallagher M. Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment. Neuropsychopharmacology. 2010;35(4):1016–25.
Article
PubMed
Google Scholar
Devi L, Ohno M. Effects of levetiracetam, an antiepileptic drug, on memory impairments associated with aging and Alzheimer’s disease in mice. Neurobiol Learn Mem. 2013;102:7–11.
Article
CAS
PubMed
Google Scholar
Haberman RP, Branch A, Gallagher M. Targeting neural hyperactivity as a treatment to stem progression of late-onset Alzheimer’s disease. Neurotherapeutics. 2017;14(3):662–76.
Article
PubMed
PubMed Central
Google Scholar
Schoenberg MR, Rum RS, Osborn KE, Werz MA. A randomized, double-blind, placebo-controlled crossover study of the effects of levetiracetam on cognition, mood, and balance in healthy older adults. Epilepsia. 2017;58(9):1566–74.
Article
CAS
PubMed
Google Scholar
Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron. 2012;74(3):467–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cumbo E, Ligori LD. Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy Behav. 2010;17(4):461–6.
Article
PubMed
Google Scholar
Moore R. Principles of synaptic transmission. Ann N Y Acad Sci. 1993;695:1–9.
Article
CAS
PubMed
Google Scholar
Mongillo G, Rumpel S, Loewenstein Y. Inhibitory connectivity defines the realm of excitatory plasticity. Nat Neurosci. 2018;21(10):1463–70.
Article
CAS
PubMed
Google Scholar
Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378(6552):75–8.
Article
CAS
PubMed
Google Scholar
Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol. 2005;562(Pt 1):9–26.
Article
CAS
PubMed
Google Scholar
Xu X, An L, Mi X, Zhang T. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in Theta and gamma oscillations in melamine-treated rats. PLoS One. 2013;8(10):e77796.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardin JA. Inhibitory interneurons regulate temporal precision and correlations in cortical circuits. Trends Neurosci. 2018;41(10):689–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones MW, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005;3(12):e402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mann EO, Kohl MM, Paulsen O. Distinct roles of GABA(a) and GABA(B) receptors in balancing and terminating persistent cortical activity. J Neurosci. 2009;29(23):7513–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehmann K, Steinecke A, Bolz J. GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons. Neural Plast. 2012;2012:8927841.
Article
CAS
Google Scholar
Hu J-H, Ma Y-H, Jiang J, Yang N, Duan S, Jiang Z-H, et al. Cognitive impairment in mice over-expressing gamma-aminobutyric acid transporter 1 (GAT1). Neuroreport. 2004;15(1):9–12.
Article
PubMed
Google Scholar
Prut L, Prenosil G, Willadt S, Vogt K, Fritschy J-M, Crestani F. A reduction in hippocampal GABA a receptor α5 subunits disrupts the memory for location of objects in mice. Genes. Brain Behav. 2010;9(5):478–88.
CAS
Google Scholar
Andrews-Zwilling Y, Gillespie AK, Kravitz AV, Nelson AB, Devidze N, Lo I, et al. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS One. 2012;7(7):e40555.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buttini M, Masliah E, Yu G-Q, Palop JJ, Chang S, Bernardo A, et al. Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. Am J Pathol. 2010;177(2):563–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain S, Yoon SY, Leung L, Knoferle J, Huang Y. Cellular source-specific effects of apolipoprotein (Apo) E4 on dendrite Arborization and dendritic spine development. PLoS One. 2013;8(3):1–14.
Article
CAS
Google Scholar
Knoferle J, Yoon SY, Walker D, Leung L, Gillespie AK, Tong LM, et al. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice. J Neurosci. 2014 Oct 15;34(42):14069–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tong LM, Yoon SY, Andrews-Zwilling Y, Yang A, Lin V, Lei H, et al. Enhancing GABA signaling during middle adulthood prevents age-dependent GABAergic interneuron decline and learning and memory deficits in ApoE4 mice. J Neurosci. 2016;36(7):2316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong LM, Djukic B, Arnold C, Gillespie AK, Yoon SY, Wang MM, et al. Inhibitory interneuron progenitor transplantation restores Normal learning and memory in ApoE4 Knock-in mice without or with Aβ accumulation. J Neurosci. 2014;34(29):9506–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra ME, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a Small-molecule structure corrector. Nat Med. 2018;24(5):647–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Y-T, Seo J, Gao F, Feldman HM, Wen H-L, Penney J, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98(6):1294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee V, Maguire J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits. 2014;8:3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lucas EK, Clem RL. GABAergic interneurons: the orchestra or the conductor in fear learning and memory? Brain Res Bull. 2018;141:13–9.
Article
CAS
PubMed
Google Scholar
Fu Y, Lv R, Jin L, Lu Q, Shao X, He J, et al. Association of apolipoprotein E polymorphisms with temporal lobe epilepsy in a Chinese Han population. Epilepsy Res. 2010;91(2–3):253–9.
Article
CAS
PubMed
Google Scholar
Li Z, Ding C, Gong X, Wang X, Cui T. Apolipoprotein E ε4 allele was associated with Nonlesional mesial temporal lobe epilepsy in Han Chinese population. Medicine (Baltimore). 2016;95(9):e2894.
Article
CAS
Google Scholar
Diaz-Arrastia R, Gong Y, Fair S, Scott KD, Garcia MC, Carlile MC, et al. Increased risk of late posttraumatic seizures associated with inheritance of APOE ∈4 allele. Arch Neurol. 2003;60(6):818–22.
Article
PubMed
Google Scholar
Salzmann A, Perroud N, Crespel A, Lambercy C, Malafosse A. Candidate genes for temporal lobe epilepsy: a replication study. Neurol Sci. 2008;29(6):397–403.
Article
PubMed
Google Scholar
Johnson EL, Krauss GL, Lee AK, Schneider ALC, Dearborn JL, Kucharska-Newton AM, et al. Association between midlife risk factors and late-onset epilepsy: results from the atherosclerosis risk in communities study. JAMA Neurol. 2018;75(11):1375–82.
Article
PubMed
PubMed Central
Google Scholar
Briellmann RS, Torn-Broers Y, Busuttil BE, Major BJ, Kalnins RM, Olsen M, et al. APOE ε4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy. Neurology. 2000;55(3):435–7.
Article
CAS
PubMed
Google Scholar
Kauffman MA, Consalvo D, Moron DG, Lereis VP, Kochen S. ApoE ɛ4 genotype and the age at onset of temporal lobe epilepsy: a case–control study and meta-analysis. Epilepsy Res. 2010;90(3):234–9.
Article
CAS
PubMed
Google Scholar
Leal B, Chaves J, Carvalho C, Bettencourt A, Freitas J, Lopes J, et al. Age of onset of mesial temporal lobe epilepsy with hippocampal sclerosis: the effect of apolipoprotein E and febrile seizures. Int J Neurosci. 2017;127(9):800–4.
Article
CAS
PubMed
Google Scholar
Aboud O, Mrak RE, Boop F, Griffin ST. Apolipoprotein epsilon 3 alleles are associated with indicators of neuronal resilience. BMC Med. 2012;10:35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sporis D, Sertic J, Henigsberg N, Mahovic D, Bogdanovic N, Babic T. Association of refractory complex partial seizures with a polymorphism of ApoE genotype. J Cell Mol Med. 2005;9(3):698–703.
Article
PubMed
PubMed Central
Google Scholar
Schubert CR, Carmichael LL, Murphy C, Klein BE, Klein R, Cruickshanks KJ. Olfaction and the 5-year incidence of cognitive impairment in an epidemiological sotudy of older adults. J Am Geriatr Soc. 2008;56(8):1517–21.
Article
PubMed
PubMed Central
Google Scholar
Devanand DP, Liu X, Tabert MH, Pradhaban G, Cuasay K, Bell K, et al. Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biol Psychiatry. 2008;64(10):871–9.
Article
PubMed
PubMed Central
Google Scholar
Olofsson JK, Rönnlund M, Nordin S, Nyberg L, Nilsson L-G, Larsson M. Odor identification deficit as a predictor of five-year global cognitive change: interactive effects with age and ApoE-ε4. Behav Genet. 2009;39(5):496–503.
Article
PubMed
Google Scholar
Olofsson JK, Josefsson M, Ekström I, Wilson D, Nyberg L, Nordin S, et al. Long-term episodic memory decline is associated with olfactory deficits only in carriers of ApoE-є4. Neuropsychologia. 2016;85:1–9.
Article
PubMed
Google Scholar
Misiak MM, Hipolito MS, Ressom HW, Obisesan TO, Manaye KF, Nwulia EA. Apo E4 alleles and impaired olfaction as predictors of Alzheimer’s disease. Clin Exp Psychol. 2017;3(4):169.
Article
PubMed
PubMed Central
Google Scholar
Hu B, Geng C, Hou X-Y. Oligomeric amyloid-β peptide disrupts olfactory information output by impairment of local inhibitory circuits in rat olfactory bulb. Neurobiol Aging. 2017;51:113–21.
Article
CAS
PubMed
Google Scholar
Peng KY, Mathews PM, Levy E, Wilson DA. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments. Neuroscience. 2017;343:364–71.
Article
CAS
PubMed
Google Scholar
Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, et al. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions : a co-expression meta-analysis. Acta Neuropathol. 2015;3(31):1–18.
Google Scholar
Frigerio CS, Wolfs L, Fattorelli N, Perry VH, Fiers M, De SB, et al. The Major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 2019;27(4):1293–306.
Article
CAS
PubMed Central
Google Scholar
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47(3):566–81 e9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest. 2017;127(9):3240–9.
Article
PubMed
PubMed Central
Google Scholar
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2017;217(2):459–72.
Article
PubMed
CAS
Google Scholar
Chen Z, Jalabi W, Hu W, Park H, Gale JT, Kidd GJ, et al. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat Commun. 2014;5:4486.
Article
CAS
PubMed
Google Scholar
Roseti C, Fucile S, Lauro C, Martinello K, Bertollini C, Esposito V, et al. Fractalkine/CX3CL1 modulates GABA(a) currents in human temporal lobe epilepsy. Epilepsia. 2013;5(10):1834–44.
Article
CAS
Google Scholar
Brockner G, Brauer K, Hartg W, Wolff JR, Rickma MJ, Derouiche A, et al. Perineuronal nets provide a Polyanionic , glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia. 1993;8(3):183–200.
Article
Google Scholar
Kwok JCF, Dick G, Wang D, Fawcett JW. Extracellular matrix and Perineuronal nets in CNS repair. Dev Neurobiol. 2011;7(11):1073–89.
Article
CAS
Google Scholar
Baig S, Wilcock GK, Love S. Loss of perineuronal net N -acetylgalactosamine in Alzheimer’s disease. Acta Neuropathol. 2005;110(4):393–401.
Article
CAS
PubMed
Google Scholar
Härtig W, Brauer K. G B. Wisteria floribunda agglutinin-labelled nets surround parvalbumin- containing neurons. Neuroreport. 1992;3(10):869–72.
Article
PubMed
Google Scholar
Cattaud V, Bezzina C, Rey CC, Lejards C, Dahan L, Verret L. Early disruption of parvalbumin expression and perineuronal nets in the hippocampus of the Tg2576 mouse model of Alzheimer’s disease can be rescued by enriched environment. Neurobiol Aging. 2018;72:147–58.
Article
CAS
PubMed
Google Scholar
Cabungcal J, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci. 2013;110(22):9130–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Persson J, Lind J, Larsson A, Ingvar M, Sleegers K, Van Broeckhoven C, et al. Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia. 2008;46(6):1679–87.
Article
CAS
PubMed
Google Scholar
Fleisher AS, Sherzai A, Taylor C, Langbaum JBS, Chen K, Buxton RB. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage. 2009;47(4):1678–90.
Article
PubMed
Google Scholar
Pihlajamäki M, Sperling RA. Functional MRI assessment of task-induced deactivation of the default mode network in Alzheimer’s disease and at-risk older individuals. Behav Neurol. 2009;21(1):77–91.
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Chen X, Gu H, Yang Y. Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. J Neurosci. 2013;33(47):18566–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapogiannis D, Reiter DA, Willette AA, Mattson MP. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 2013;64:112–9.
Article
CAS
PubMed
Google Scholar
Chen X, Fan X, Hu Y, Zuo C, Whitfield-Gabrieli S, Holt D, et al. Regional GABA concentrations modulate inter-network resting-state functional connectivity. Cereb Cortex. 2018. https://doi.org/10.1093/cercor/bhy059.
Article
PubMed Central
Google Scholar
Buckner RL, Andrews-Hanna JR, Schacter DL. The Brain’s default network:anatomy, function and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.
Article
PubMed
Google Scholar
Mevel K, Chételat G, Eustache F, Desgranges B. The default mode network in healthy aging and Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:535816.
PubMed
PubMed Central
Google Scholar
Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A. 2003;100(24):14504–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJS. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–96.
Article
PubMed
Google Scholar
Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65(3):404–11.
Article
CAS
PubMed
Google Scholar
Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64(3):501–8.
Article
PubMed
Google Scholar
Nuriel T, Angulo SL, Khan U, Ashok A, Chen Q, Figueroa HY, et al. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology. Nat Commun. 2017;8(1):1464.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bakker A, Albert MS, Krauss G, Speck CL, Gallagher M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage Clin. 2015;7:688–98.
Article
PubMed
PubMed Central
Google Scholar
Yassa MA, Lacy JW, Stark SM, Albert MS, Gallagher M, Stark CE. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus. 2011;21(9):968–79.
PubMed
Google Scholar
Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry. 2008;79(6):630–5.
Article
CAS
PubMed
Google Scholar
Leal SL, Landau SM, Bell RK, Jagust WJ. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. Elife. 2017;6:e22978.
Article
PubMed
PubMed Central
Google Scholar
Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc Natl Acad Sci U S A. 2009;106(17):7209–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dennis NA, Browndyke JN, Stokes J, Need A, Burke JR, Welsh-Bohmer KA, et al. Temporal lobe functional activity and connectivity in young adult APOE ɛ4 carriers. Alzheimers Dement. 2010;6(4):303–11.
Article
PubMed
Google Scholar
Gillespie AK, Jones EA, Lin Y-H, Karlsson MP, Kay K, Yoon SY, et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron. 2016;90(4):740–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buzsáki G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25(10):1073–188.
Article
PubMed
PubMed Central
Google Scholar
Carr MF, Karlsson MP, Frank LM. Transient slow gamma synchrony underlies hippocampal memory replay. Neuron. 2012;75(4):700–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva DF, Selfridge JE, Lu J, E L, Cardoso SM, Swerdlow RH. Mitochondrial abnormalities in Alzheimer’s disease. Possible targets for therapeutic intervention. Adv Pharmacol. 2012;64:83–126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim Biophys Acta. 2014;1842(8):1219–31.
Article
CAS
PubMed
Google Scholar
Chang S, ran Ma T, Miranda RD, Balestra ME, Mahley RW, Huang Y. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A. 2005;102(51):18694–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen HK, Ji ZS, Dodson SE, Miranda RD, Rosenblum CI, Reynolds IJ, et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J Biol Chem. 2011;286(7):5215–21.
Article
CAS
PubMed
Google Scholar
Kann O, Papageorgiou IE, Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab. 2014;34(8):1270–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kann O. The interneuron energy hypothesis: implications for brain disease. Neurobiol Dis. 2016;90:75–85.
Article
CAS
PubMed
Google Scholar
Orr AL, Kim C, Jimenez-morales D, Newton BW, Johnson J, Swaney D, et al. Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J Alzheimers Dis. 2019;68(3):991–1011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell. 2013;12(4):487–96.
Article
CAS
PubMed
Google Scholar
Kondo T, Imamura K, Funayama M, Tsukita K, Miyake M, Ohta A, et al. iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease. Cell Rep. 2017;21(8):2304–12.
Article
CAS
PubMed
Google Scholar
Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci. 2016;8:31.
PubMed
PubMed Central
Google Scholar
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease. Front Cell Neurosci. 2014;8:167.
Article
PubMed
PubMed Central
CAS
Google Scholar
Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RLM, Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer’s disease. J Neurochem. 2018;146(6):649–69.
Article
PubMed
CAS
Google Scholar
Helmstaedter C, Witt J-A. Cognitive outcome of antiepileptic treatment with levetiracetam versus carbamazepine monotherapy: a non-interventional surveillance trial. Epilepsy Behav. 2010;18(1–2):74–80.
Article
PubMed
Google Scholar
Lippa CF, Rosso A, Hepler M, Jenssen S, Pillai J, Irwin D. Levetiracetam: a practical option for seizure management in elderly patients with cognitive impairment. Am J Alzheimer’s Dis Other Dementiasr. 2010;25(2):149–54.
Article
Google Scholar
Haberman RP, Koh MT, Gallagher M. Heightened cortical excitability in aged rodents with memory impairment. Neurobiol Aging. 2017;54:144–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vidal-Piñeiro D, Martín-Trias P, Falcón C, Bargalló N, Clemente IC, Valls-Solé J, et al. Neurochemical modulation in posteromedial default-mode network cortex induced by transcranial magnetic stimulation. Brain Stimul. 2015;8(5):937–44.
Article
PubMed
Google Scholar
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459(7247):663–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ketz N, Jones AP, Bryant NB, Clark VP, Pilly PK. Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J Neurosci. 2018;38(33):7314–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540(7632):230–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martorell AJ, Paulson AL, Suk H, Boyden ES, Singer AC, Tsai L. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell. 2019;177(2):256–71 e22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li K-X, Lu Y-M, Xu Z-H, Zhang J, Zhu J-M, Zhang J-M, et al. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat Neurosci. 2011;15(2):267–73.
Article
PubMed
CAS
Google Scholar
Marissal T, Salazar RF, Bertollini C, Mutel S, De Roo M, Rodriguez I, et al. Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nat Neurosci. 2018;21(10):1412–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava D, DeWitt N. In vivo cellular reprogramming: the next generation. Cell. 2016;166(6):1386–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyson JA, Anderson SA. GABAergic interneuron transplants to study development and treat disease. Trends Neurosci. 2014;37(3):169–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinbeck JA, Studer L. Moving stem cells to the clinic: potential and limitations for brain repair. Neuron. 2015;86(1):187–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Zhu H, Sun X, Zuo F, Lei J, Wang Z, et al. Human neural stem cell transplantation rescues cognitive defects in APP/PS1 model of Alzheimer’s disease by enhancing neuronal connectivity and metabolic activity. Front Aging Neurosci. 2016;8:282.
PubMed
PubMed Central
Google Scholar
Cunningham M, Cho J-H, Leung A, Savvidis G, Ahn S, Moon M, et al. hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell. 2014;15(5):559–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, et al. Nav1.1-overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron. 2018;98(1):75–89.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar