Skip to main content

Articles

163 result(s) for 'mayo clinic' within Molecular Neurodegeneration

Page 1 of 4

  1. Alzheimer’s disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor-tau, and...

    Authors: Stephanie R. Oatman, Joseph S. Reddy, Zachary Quicksall, Minerva M. Carrasquillo, Xue Wang, Chia-Chen Liu, Yu Yamazaki, Thuy T. Nguyen, Kimberly Malphrus, Michael Heckman, Kristi Biswas, Kwangsik Nho, Matthew Baker, Yuka A. Martens, Na Zhao, Jun Pyo Kim…
    Citation: Molecular Neurodegeneration 2023 18:2
  2. Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyp...

    Authors: Daniel Sevlever, Fanggeng Zou, Li Ma, Sebastian Carrasquillo, Michael G Crump, Oliver J Culley, Talisha A Hunter, Gina D Bisceglio, Linda Younkin, Mariet Allen, Minerva M Carrasquillo, Sigrid B Sando, Jan O Aasly, Dennis W Dickson, Neill R Graff-Radford, Ronald C Petersen…
    Citation: Molecular Neurodegeneration 2015 10:18

    The Erratum to this article has been published in Molecular Neurodegeneration 2015 10:49

  3. Large-scale brain bulk-RNAseq studies identified molecular pathways implicated in Alzheimer’s disease (AD), however these findings can be confounded by cellular composition changes in bulk-tissue. To identify ...

    Authors: Xue Wang, Mariet Allen, Shaoyu Li, Zachary S. Quicksall, Tulsi A. Patel, Troy P. Carnwath, Joseph S. Reddy, Minerva M. Carrasquillo, Sarah J. Lincoln, Thuy T. Nguyen, Kimberly G. Malphrus, Dennis W. Dickson, Julia E. Crook, Yan W. Asmann and Nilüfer Ertekin-Taner
    Citation: Molecular Neurodegeneration 2020 15:38

    The Correction to this article has been published in Molecular Neurodegeneration 2020 15:54

  4. Recent genome-wide association studies (GWAS) of late-onset Alzheimer’s disease (LOAD) have identified single nucleotide polymorphisms (SNPs) which show significant association at the well-known APOE locus and at...

    Authors: Christopher W Medway, Samer Abdul-Hay, Tynickwa Mims, Li Ma, Gina Bisceglio, Fanggeng Zou, Shane Pankratz, Sigrid B Sando, Jan O Aasly, Maria Barcikowska, Joanna Siuda, Zbigniew K Wszolek, Owen A Ross, Minerva Carrasquillo, Dennis W Dickson, Neill Graff-Radford…
    Citation: Molecular Neurodegeneration 2014 9:11
  5. A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near MS4A4A, CD2AP, EPHA1 and CD33. Meta-analyses ...

    Authors: Minerva M Carrasquillo, Olivia Belbin, Talisha A Hunter, Li Ma, Gina D Bisceglio, Fanggeng Zou, Julia E Crook, V Shane Pankratz, Sigrid B Sando, Jan O Aasly, Maria Barcikowska, Zbigniew K Wszolek, Dennis W Dickson, Neill R Graff-Radford, Ronald C Petersen, Peter Passmore…
    Citation: Molecular Neurodegeneration 2011 6:54
  6. We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-...

    Authors: Melissa E. Murray, Christina M. Moloney, Naomi Kouri, Jeremy A. Syrjanen, Billie J. Matchett, Darren M. Rothberg, Jessica F. Tranovich, Tiffany N. Hicks Sirmans, Heather J. Wiste, Baayla D. C. Boon, Aivi T. Nguyen, R. Ross Reichard, Dennis W. Dickson, Val J. Lowe, Jeffrey L. Dage, Ronald C. Petersen…
    Citation: Molecular Neurodegeneration 2022 17:85
  7. Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer’s disease (AD).

    Authors: Olivia J Conway, Minerva M Carrasquillo, Xue Wang, Jenny M Bredenberg, Joseph S Reddy, Samantha L Strickland, Curtis S Younkin, Jeremy D Burgess, Mariet Allen, Sarah J Lincoln, Thuy Nguyen, Kimberly G Malphrus, Alexandra I Soto, Ronald L Walton, Bradley F Boeve, Ronald C Petersen…
    Citation: Molecular Neurodegeneration 2018 13:53
  8. Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may...

    Authors: Mariet Allen, Fanggeng Zou, High Seng Chai, Curtis S Younkin, Richard Miles, Asha A Nair, Julia E Crook, V Shane Pankratz, Minerva M Carrasquillo, Christopher N Rowley, Thuy Nguyen, Li Ma, Kimberly G Malphrus, Gina Bisceglio, Alexandra I Ortolaza, Ryan Palusak…
    Citation: Molecular Neurodegeneration 2012 7:13
  9. A rare variant in the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) gene has been reported to be a genetic risk factor for Alzheimer’s disease by two independent groups (Odds ratio between 2.9-4.5). Gi...

    Authors: Sruti Rayaprolu, Bianca Mullen, Matt Baker, Timothy Lynch, Elizabeth Finger, William W Seeley, Kimmo J Hatanpaa, Catherine Lomen-Hoerth, Andrew Kertesz, Eileen H Bigio, Carol Lippa, Keith A Josephs, David S Knopman, Charles L White III, Richard Caselli, Ian R Mackenzie…
    Citation: Molecular Neurodegeneration 2013 8:19
  10. Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA cont...

    Authors: Jada Lewis, Heather Melrose, David Bumcrot, Andrew Hope, Cynthia Zehr, Sarah Lincoln, Adam Braithwaite, Zhen He, Sina Ogholikhan, Kelly Hinkle, Caroline Kent, Ivanka Toudjarska, Klaus Charisse, Ravi Braich, Rajendra K Pandey, Michael Heckman…
    Citation: Molecular Neurodegeneration 2008 3:19
  11. Authors: Wenhui Qiao, Yixing Chen, Jun Zhong, Benjamin J. Madden, Cristine M. Charlesworth, Yuka A. Martens, Chia-Chen Liu, Joshua Knight, Tadafumi C. Ikezu, Aishe Kurti, Yiyang Zhu, Axel Meneses, Cassandra L. Rosenberg, Lindsey A. Kuchenbecker, Lucy K. Vanmaele, Fuyao Li…
    Citation: Molecular Neurodegeneration 2023 18:28

    The original article was published in Molecular Neurodegeneration 2023 18:8

  12. Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has been descr...

    Authors: Marka van Blitterswijk, Bianca Mullen, Aleksandra Wojtas, Michael G Heckman, Nancy N Diehl, Matthew C Baker, Mariely DeJesus-Hernandez, Patricia H Brown, Melissa E Murray, Ging-Yuek R Hsiung, Heather Stewart, Anna M Karydas, Elizabeth Finger, Andrew Kertesz, Eileen H Bigio, Sandra Weintraub…
    Citation: Molecular Neurodegeneration 2014 9:38
  13. Low frequency coding variants in TREM2 are associated with Alzheimer disease (AD) risk and cerebrospinal fluid (CSF) TREM2 protein levels are different between AD cases and controls. Similarly, TREM2 risk variant...

    Authors: Jorge L. Del-Aguila, Bruno A. Benitez, Zeran Li, Umber Dube, Kathie A. Mihindukulasuriya, John P. Budde, Fabiana H. G. Farias, Maria Victoria Fernández, Laura Ibanez, Shan Jiang, Richard J. Perrin, Nigel J. Cairns, John C. Morris, Oscar Harari and Carlos Cruchaga
    Citation: Molecular Neurodegeneration 2019 14:18
  14. Alzheimer’s disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The car...

    Authors: Michael A. DeTure and Dennis W. Dickson
    Citation: Molecular Neurodegeneration 2019 14:32
  15. Rheumatoid arthritis (RA) and Alzheimer's disease (AD) are inversely associated. To test the hypothesis that genetic elements associated with increased RA risk are associated with decreased AD risk, we evaluat...

    Authors: Christopher R Simmons, Fanggeng Zou, Steven G Younkin and Steven Estus
    Citation: Molecular Neurodegeneration 2011 6:33
  16. Loss of function COQ2 mutations results in primary CoQ10 deficiency. Recently, recessive mutations of the COQ2 gene have been identified in two unrelated Japanese families with multiple system atrophy (MSA). It h...

    Authors: Kotaro Ogaki, Shinsuke Fujioka, Michael G Heckman, Sruti Rayaprolu, Alexandra I Soto-Ortolaza, Catherine Labbé, Ronald L Walton, Oswaldo Lorenzo-Betancor, Xue Wang, Yan Asmann, Rosa Rademakers, Neill Graff-Radford, Ryan Uitti, William P Cheshire, Zbigniew K Wszolek, Dennis W Dickson…
    Citation: Molecular Neurodegeneration 2014 9:44
  17. Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, causing both nuclea...

    Authors: Bilal Khalil, Deepak Chhangani, Melissa C. Wren, Courtney L. Smith, Jannifer H. Lee, Xingli Li, Christian Puttinger, Chih-Wei Tsai, Gael Fortin, Dmytro Morderer, Junli Gao, Feilin Liu, Chun Kim Lim, Jingjiao Chen, Ching-Chieh Chou, Cara L. Croft…
    Citation: Molecular Neurodegeneration 2022 17:80
  18. TREM2 encodes for triggering receptor expressed on myeloid cells 2 and has rare, coding variants that associate with risk for late-onset Alzheimer’s disease (LOAD) in Caucasians of European and...

    Authors: Sheng Chih Jin, Minerva M Carrasquillo, Bruno A Benitez, Tara Skorupa, David Carrell, Dwani Patel, Sarah Lincoln, Siddharth Krishnan, Michaela Kachadoorian, Christiane Reitz, Richard Mayeux, Thomas S Wingo, James J Lah, Allan I Levey, Jill Murrell, Hugh Hendrie…
    Citation: Molecular Neurodegeneration 2015 10:19
  19. Alzheimer’s disease (AD) is the leading cause of dementia among the elderly. Disease modifying therapies targeting Aβ that are in development have been proposed to be more effective if treatment was initiated ...

    Authors: Pritam Das, Christophe Verbeeck, Lisa Minter, Paramita Chakrabarty, Kevin Felsenstein, Thomas Kukar, Ghulam Maharvi, Abdul Fauq, Barbara A Osborne and Todd E Golde
    Citation: Molecular Neurodegeneration 2012 7:39
  20. Mitochondrial dysfunction is a feature of neurodegenerative diseases, including Alzheimer’s disease (AD). Changes in the mitochondrial DNA copy number (mtDNAcn) and increased mitochondrial DNA mutation burden ...

    Authors: Hans-Ulrich Klein, Caroline Trumpff, Hyun-Sik Yang, Annie J. Lee, Martin Picard, David A. Bennett and Philip L. De Jager
    Citation: Molecular Neurodegeneration 2021 16:75
  21. The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer’s disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domai...

    Authors: Wenhui Qiao, Yixing Chen, Jun Zhong, Benjamin J. Madden, Cristine M. Charlesworth, Yuka A. Martens, Chia-Chen Liu, Joshua Knight, Tadafumi C. Ikezu, Aishe Kurti, Yiyang Zhu, Axel Meneses, Cassandra L. Rosenberg, Lindsey A. Kuchenbecker, Lucy K. Vanmaele, Fuyao Li…
    Citation: Molecular Neurodegeneration 2023 18:8

    The Correction to this article has been published in Molecular Neurodegeneration 2023 18:28

  22. Human tauopathies including Alzheimer’s disease (AD) are characterized by alterations in the post-translational modification (PTM) pattern of Tau, which parallel the formation of insoluble Tau aggregates, neur...

    Authors: Maria Bichmann, Nuria Prat Oriol, Ebru Ercan-Herbst, David C. Schöndorf, Borja Gomez Ramos, Vera Schwärzler, Marie Neu, Annabelle Schlüter, Xue Wang, Liang Jin, Chenqi Hu, Yu Tian, Janina S. Ried, Per Haberkant, Laura Gasparini and Dagmar E. Ehrnhoefer
    Citation: Molecular Neurodegeneration 2021 16:46
  23. Progressive supranuclear palsy (PSP) is a parkinsonian neurodegenerative tauopathy affecting brain regions involved in motor function, including the basal ganglia, diencephalon and brainstem. While PSP is larg...

    Authors: Monica Y. Sanchez-Contreras, Naomi Kouri, Casey N. Cook, Daniel J. Serie, Michael G. Heckman, NiCole A. Finch, Richard J. Caselli, Ryan J. Uitti, Zbigniew K. Wszolek, Neill Graff-Radford, Leonard Petrucelli, Li-San Wang, Gerard D. Schellenberg, Dennis W. Dickson, Rosa Rademakers and Owen A. Ross
    Citation: Molecular Neurodegeneration 2018 13:37
  24. Accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer’s disease (AD). The clusterin (CLU) gene confers a risk for AD and CLU is highly upregulated in AD patients, with the co...

    Authors: Aleksandra M. Wojtas, Jonathon P. Sens, Silvia S. Kang, Kelsey E. Baker, Taylor J. Berry, Aishe Kurti, Lillian Daughrity, Karen R. Jansen-West, Dennis W. Dickson, Leonard Petrucelli, Guojun Bu, Chia-Chen Liu and John D. Fryer
    Citation: Molecular Neurodegeneration 2020 15:71
  25. Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNP)s that are essentially unequivocally associated with peripheral cholesterol. Since the alleles of the APOE gene, ...

    Authors: Christopher R Simmons, Fanggeng Zou, Steven G Younkin and Steven Estus
    Citation: Molecular Neurodegeneration 2011 6:62
  26. Many neurodegenerative diseases are caused by nucleotide repeat expansions, but most expansions, like the C9orf72 ‘GGGGCC’ (G4C2) repeat that causes approximately 5–7% of all amyotrophic lateral sclerosis (ALS) a...

    Authors: Mark T. W. Ebbert, Stefan L. Farrugia, Jonathon P. Sens, Karen Jansen-West, Tania F. Gendron, Mercedes Prudencio, Ian J. McLaughlin, Brett Bowman, Matthew Seetin, Mariely DeJesus-Hernandez, Jazmyne Jackson, Patricia H. Brown, Dennis W. Dickson, Marka van Blitterswijk, Rosa Rademakers, Leonard Petrucelli…
    Citation: Molecular Neurodegeneration 2018 13:46
  27. More than 75 common variant loci account for only a portion of the heritability for Alzheimer’s disease (AD). A more complete understanding of the genetic basis of AD can be deduced by exploring associations w...

    Authors: Moonil Kang, Ting Fang Alvin Ang, Sherral A. Devine, Richard Sherva, Shubhabrata Mukherjee, Emily H. Trittschuh, Laura E. Gibbons, Phoebe Scollard, Michael Lee, Seo-Eun Choi, Brandon Klinedinst, Connie Nakano, Logan C. Dumitrescu, Alaina Durant, Timothy J. Hohman, Michael L. Cuccaro…
    Citation: Molecular Neurodegeneration 2023 18:40
  28. All samples were obtained through the ALS Center at Mayo Clinic Florida. Our primary cohort included 75 unrelated...C9orf72 repeat, 33 patients who did not possess this expansion, and 20 control subjects without ...

    Authors: Jazmyne L. Jackson, NiCole A. Finch, Matthew C. Baker, Jennifer M. Kachergus, Mariely DeJesus-Hernandez, Kimberly Pereira, Elizabeth Christopher, Mercedes Prudencio, Michael G. Heckman, E. Aubrey Thompson, Dennis W. Dickson, Jaimin Shah, Björn Oskarsson, Leonard Petrucelli, Rosa Rademakers and Marka van Blitterswijk
    Citation: Molecular Neurodegeneration 2020 15:7
  29. The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson’s disease (PD) and Lewy body dementia (LBD). Studies have shown that patho...

    Authors: Kai Chen, Yuka A. Martens, Axel Meneses, Daniel H. Ryu, Wenyan Lu, Ana Caroline Raulin, Fuyao Li, Jing Zhao, Yixing Chen, Yunjung Jin, Cynthia Linares, Marshall Goodwin, Yonghe Li, Chia-Chen Liu, Takahisa Kanekiyo, David M. Holtzman…
    Citation: Molecular Neurodegeneration 2022 17:57
  30. Authors: Anna Calliari, Lillian M. Daughrity, Ellen A. Albagli, Paula Castellanos Otero, Mei Yue, Karen Jansen-West, Naeyma N. Islam, Thomas Caulfield, Bailey Rawlinson, Michael DeTure, Casey Cook, Neill R. Graff-Radford, Gregory S. Day, Bradley F. Boeve, David S. Knopman, Ronald C. Petersen…
    Citation: Molecular Neurodegeneration 2024 19:56

    The original article was published in Molecular Neurodegeneration 2024 19:29

  31. Inclusions of TAR DNA-binding protein 43 kDa (TDP-43) has been designated limbic-predominant, age-related TDP-43 encephalopathy (LATE), with or without co-occurrence of Alzheimer’s disease (AD). Approximately,...

    Authors: Virginia Estades Ayuso, Sarah Pickles, Tiffany Todd, Mei Yue, Karen Jansen-West, Yuping Song, Jesús González Bejarano, Bailey Rawlinson, Michael DeTure, Neill R. Graff-Radford, Bradley F. Boeve, David S. Knopman, Ronald C. Petersen, Dennis W. Dickson, Keith A. Josephs, Leonard Petrucelli…
    Citation: Molecular Neurodegeneration 2023 18:57
  32. Although genome wide studies have associated single nucleotide polymorphisms (SNP)s near PICALM with Alzheimer’s disease (AD), the mechanism underlying this association is unclear. PICALM is involved in clathrin-...

    Authors: Ishita Parikh, Christopher Medway, Steven Younkin, David W Fardo and Steven Estus
    Citation: Molecular Neurodegeneration 2014 9:32
  33. Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide associat...

    Authors: Hui Wang, Timothy S. Chang, Beth A. Dombroski, Po-Liang Cheng, Vishakha Patil, Leopoldo Valiente-Banuet, Kurt Farrell, Catriona Mclean, Laura Molina-Porcel, Alex Rajput, Peter Paul De Deyn, Nathalie Le Bastard, Marla Gearing, Laura Donker Kaat, John C. Van Swieten, Elise Dopper…
    Citation: Molecular Neurodegeneration 2024 19:61
  34. Pallido-ponto-nigral degeneration (PPND), a major subtype of frontotemporal dementia with parkinsonism related to chromosome 17 (FTDP-17), is a progressive and terminal neurodegenerative disease caused by c.83...

    Authors: Melissa C. Wren, Jing Zhao, Chia-Chen Liu, Melissa E. Murray, Yuka Atagi, Mary D. Davis, Yuan Fu, Hirotaka J. Okano, Kotaro Ogaki, Audrey J. Strongosky, Pawel Tacik, Rosa Rademakers, Owen A. Ross, Dennis W. Dickson, Zbigniew K. Wszolek, Takahisa Kanekiyo…
    Citation: Molecular Neurodegeneration 2015 10:46
  35. This letter demonstrates the potential of novel cryptic proteins resulting from TAR DNA-binding protein 43 (TDP-43) dysfunction as markers of TDP-43 pathology in neurodegenerative diseases.

    Authors: Anna Calliari, Lillian M. Daughrity, Ellen A. Albagli, Paula Castellanos Otero, Mei Yue, Karen Jansen-West, Naeyma N. Islam, Thomas Caulfield, Bailey Rawlinson, Michael DeTure, Casey Cook, Neill R. Graff-Radford, Gregory S. Day, Bradley F. Boeve, David S. Knopman, Ronald C. Petersen…
    Citation: Molecular Neurodegeneration 2024 19:29

    The Correction to this article has been published in Molecular Neurodegeneration 2024 19:56

  36. Genetic analyses showed that the triggering receptor expressed in myeloid cells 2 (TREM2) p.R47H variant increases the risk for Alzheimer’s disease (AD). The question of whether the p.R47H mutation affects exp...

    Authors: Li Ma, Mariet Allen, Nobutaka Sakae, Nilufer Ertekin-Taner, Neill R. Graff-Radford, Dennis W. Dickson, Steven G. Younkin and Daniel Sevlever
    Citation: Molecular Neurodegeneration 2016 11:72
  37. Misfolding and aggregation of the presynaptic protein alpha-synuclein (αsyn) is a hallmark of Parkinson’s disease (PD) and related synucleinopathies. Although predominantly localized in the cytosol, a body of ...

    Authors: Jae-Hyeon Park, Jeremy D. Burgess, Ayman H. Faroqi, Natasha N. DeMeo, Fabienne C. Fiesel, Wolfdieter Springer, Marion Delenclos and Pamela J. McLean
    Citation: Molecular Neurodegeneration 2020 15:5
  38. Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson’s disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a...

    Authors: Maya Ando, Fabienne C. Fiesel, Roman Hudec, Thomas R. Caulfield, Kotaro Ogaki, Paulina Górka-Skoczylas, Dariusz Koziorowski, Andrzej Friedman, Li Chen, Valina L. Dawson, Ted M. Dawson, Guojun Bu, Owen A. Ross, Zbigniew K. Wszolek and Wolfdieter Springer
    Citation: Molecular Neurodegeneration 2017 12:32
  39. Accumulation of filamentous α-synuclein as Lewy bodies is a hallmark of Parkinson's disease. To identify the mechanisms involved in α-synuclein assembly and determine whether the assemblies are cytotoxic, we d...

    Authors: Peizhou Jiang, Ming Gan, Abdul Shukkur Ebrahim, Wen-Lang Lin, Heather L Melrose and Shu-Hui C Yen
    Citation: Molecular Neurodegeneration 2010 5:56
  40. Synucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytopl...

    Authors: Shunsuke Koga, Hiroaki Sekiya, Naveen Kondru, Owen A. Ross and Dennis W. Dickson
    Citation: Molecular Neurodegeneration 2021 16:83
  41. An amendment to this paper has been published and can be accessed via the original article.

    Authors: Xiaoqiang Tang, Arturo Toro, T. G. Sahana, Junli Gao, Jessica Chalk, Björn Oskarsson and Ke Zhang
    Citation: Molecular Neurodegeneration 2020 15:37

    The original article was published in Molecular Neurodegeneration 2020 15:34

  42. An amendment to this paper has been published and can be accessed via the original article.

    Authors: Xue Wang, Mariet Allen, Shaoyu Li, Zachary S. Quicksall, Tulsi A. Patel, Troy P. Carnwath, Joseph S. Reddy, Minerva M. Carrasquillo, Sarah J. Lincoln, Thuy T. Nguyen, Kimberly G. Malphrus, Dennis W. Dickson, Julia E. Crook, Yan W. Asmann and Nilüfer Ertekin-Taner
    Citation: Molecular Neurodegeneration 2020 15:54

    The original article was published in Molecular Neurodegeneration 2020 15:38

  43. Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer’s have focused on rare familial mutations, due to a lack of frank neuropathology from mo...

    Authors: Christoph Preuss, Ravi Pandey, Erin Piazza, Alexander Fine, Asli Uyar, Thanneer Perumal, Dylan Garceau, Kevin P. Kotredes, Harriet Williams, Lara M. Mangravite, Bruce T. Lamb, Adrian L. Oblak, Gareth R. Howell, Michael Sasner, Benjamin A. Logsdon and Gregory W. Carter
    Citation: Molecular Neurodegeneration 2020 15:67
  44. Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, ...

    Authors: Philipp A. Jaeger, Kurt M. Lucin, Markus Britschgi, Badri Vardarajan, Ruo-Pan Huang, Elizabeth D. Kirby, Rachelle Abbey, Bradley F. Boeve, Adam L. Boxer, Lindsay A. Farrer, NiCole Finch, Neill R. Graff-Radford, Elizabeth Head, Matan Hofree, Ruochun Huang, Hudson Johns…
    Citation: Molecular Neurodegeneration 2016 11:31

    The Erratum to this article has been published in Molecular Neurodegeneration 2016 11:42

  45. Single nucleotide polymorphisms (SNPs) inherited as one of two common haplotypes at the transmembrane protein 106B (TMEM106B) locus are associated with the risk of multiple neurodegenerative diseases, including f...

    Authors: Yingxue Ren, Marka van Blitterswijk, Mariet Allen, Minerva M. Carrasquillo, Joseph S. Reddy, Xue Wang, Thomas G. Beach, Dennis W. Dickson, Nilüfer Ertekin-Taner, Yan W. Asmann and Rosa Rademakers
    Citation: Molecular Neurodegeneration 2018 13:35
  46. Transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein encoded by the TARDBP gene that is involved in RNA splicing, trafficking, stabilization, and thus, the regulation of gene exp...

    Authors: Axel Meneses, Shunsuke Koga, Justin O’Leary, Dennis W. Dickson, Guojun Bu and Na Zhao
    Citation: Molecular Neurodegeneration 2021 16:84
  47. Progranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-...

    Authors: Jennifer Gass, Wing C Lee, Casey Cook, Nicole Finch, Caroline Stetler, Karen Jansen-West, Jada Lewis, Christopher D Link, Rosa Rademakers, Anders Nykjær and Leonard Petrucelli
    Citation: Molecular Neurodegeneration 2012 7:33
  48. Recent research in Alzheimer’s disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating co...

    Authors: Jungsu Kim, Paramita Chakrabarty, Amanda Hanna, Amelia March, Dennis W Dickson, David R Borchelt, Todd Golde and Christopher Janus
    Citation: Molecular Neurodegeneration 2013 8:15
  49. A G4C2 hexanucleotide repeat expansion in the noncoding region of C9orf72 is the major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). Putative disease mechanisms underlyin...

    Authors: Jeannie Chew, Casey Cook, Tania F. Gendron, Karen Jansen-West, Giulia del Rosso, Lillian M. Daughrity, Monica Castanedes-Casey, Aishe Kurti, Jeannette N. Stankowski, Matthew D. Disney, Jeffrey D. Rothstein, Dennis W. Dickson, John D. Fryer, Yong-Jie Zhang and Leonard Petrucelli
    Citation: Molecular Neurodegeneration 2019 14:9