Wilcock DM, Colton CA: Anti-amyloid-beta immunotherapy in Alzheimer's disease: relevance of transgenic mouse studies to clinical trials. J Alzheimers Dis. 2008, 15: 555-569.
PubMed
CAS
PubMed Central
Google Scholar
Nerelius C, Gustafsson M, Nordling K, Larsson A, Johansson J: Anti-amyloid activity of the C-terminal domain of proSP-C against amyloid beta-peptide and medin. Biochemistry. 2009, 48: 3778-3786. 10.1021/bi900135c.
Article
PubMed
CAS
Google Scholar
Stains CI, Mondal K, Ghosh I: Molecules that target beta-amyloid. ChemMedChem. 2007, 2: 1674-1692. 10.1002/cmdc.200700140.
Article
PubMed
CAS
Google Scholar
Foster JK, Verdile G, Bates KA, Martins RN: Immunization in Alzheimer's disease: naive hope or realistic clinical potential?. Mol Psychiatry. 2009, 14: 239-251. 10.1038/mp.2008.115.
Article
PubMed
CAS
Google Scholar
St George-Hyslop PH, Morris JC: Will anti-amyloid therapies work for Alzheimer's disease?. Lancet. 2008, 372: 180-182. 10.1016/S0140-6736(08)61047-8.
Article
PubMed
Google Scholar
Liao FF, Xu H: Insulin signaling in sporadic Alzheimer's disease. Sci Signal. 2009, 2: e36-10.1126/scisignal.274pe36.
Article
Google Scholar
De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, et al: Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA. 2009, 106: 1971-1976. 10.1073/pnas.0809158106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW: The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol Biol Cell. 2009, 20: 1533-1544. 10.1091/mbc.E08-07-0777.
Article
PubMed
CAS
PubMed Central
Google Scholar
Landreth G: Therapeutic use of agonists of the nuclear receptor PPARgamma in Alzheimer's disease. Curr Alzheimer Res. 2007, 4: 159-164. 10.2174/156720507780362092.
Article
PubMed
CAS
Google Scholar
Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al: Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008, 70: 440-448. 10.1212/01.WNL.0000265401.62434.36.
Article
PubMed
CAS
Google Scholar
DeRosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, et al: Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA. 2005, 102: 3811-3816. 10.1073/pnas.0500195102.
Article
CAS
Google Scholar
Louzada PR, Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST: Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer's disease and other neurological disorders. FASEB J. 2004, 18: 511-518. 10.1096/fj.03-0739com.
Article
PubMed
CAS
Google Scholar
Louzada PR, Paula Lima AC, De Mello FG, Ferreira ST: Dual role of glutamatergic neurotransmission on amyloid beta(1-42) aggregation and neurotoxicity in embryonic avian retina6. Neurosci Lett. 2001, 301: 59-63. 10.1016/S0304-3940(01)01585-3.
Article
PubMed
CAS
Google Scholar
Tuszynski MH, Blesch A: Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer's disease. Prog Brain Res. 2004, 146: 441-449.
PubMed
CAS
Google Scholar
Tuszynski MH, Thal L, Pay M, Salmon DP, HS U, Bakay R, et al: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med. 2005, 11: 551-555. 10.1038/nm1239.
Article
PubMed
CAS
Google Scholar
Tuszynski MH: Nerve growth factor gene therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2007, 21: 179-189. 10.1097/WAD.0b013e318068d6d2.
Article
PubMed
CAS
Google Scholar
Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, et al: Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J Clin Invest. 1997, 100: 2333-2340. 10.1172/JCI119772.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yaar M, Zhai S, Fine RE, Eisenhauer PB, Arble BL, Stewart KB, et al: Amyloid beta binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J Biol Chem. 2002, 277: 7720-7725. 10.1074/jbc.M110929200.
Article
PubMed
CAS
Google Scholar
Arevalo MA, Roldan PM, Chacon PJ, Rodriguez-Tebar A: Amyloidβ serves as an NGF-like neurotrophic factor or acts as a NGF antagonist depending on its concentration. J Neurochem. 2009, 111: 1425-1433. 10.1111/j.1471-4159.2009.06412.x.
Article
PubMed
CAS
Google Scholar
Salama-Cohen P, Arevalo MA, Meier J, Grantyn R, Rodriguez-Tebar A: NGF controls dendrite development in hippocampal neurons by binding to p75NTR and modulating the cellular targets of Notch. Mol Biol Cell. 2005, 16: 339-347. 10.1091/mbc.E04-05-0438.
Article
PubMed
CAS
PubMed Central
Google Scholar
Salama-Cohen P, Arevalo MA, Grantyn R, Rodriguez-Tebar A: Notch and NGF/p75NTR control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through Neurogenin 3. J Neurochem. 2006, 97: 1269-1278. 10.1111/j.1471-4159.2006.03783.x.
Article
PubMed
CAS
Google Scholar
Coulson EJ: Does the p75 neurotrophin receptor mediate Abeta-induced toxicity in Alzheimer's disease?. J Neurochem. 2006, 98: 654-660. 10.1111/j.1471-4159.2006.03905.x.
Article
PubMed
CAS
Google Scholar
Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ: Beta-amyloid(1-42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 2008, 28: 3941-3946. 10.1523/JNEUROSCI.0350-08.2008.
Article
PubMed
CAS
Google Scholar
Passino MA, Adams RA, Sikorski SL, Akassoglou K: Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science. 2007, 315: 1853-1856. 10.1126/science.1137603.
Article
PubMed
CAS
Google Scholar
Yamashita T, Tohyama M: The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neuroscience. 2003, 6: 461-467.
PubMed
CAS
Google Scholar
Nobes CD, Hall A: Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999, 144: 1235-1244. 10.1083/jcb.144.6.1235.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hoffmann C, Pop M, Leemhuis J, Schirmer J, Aktories K, Schmidt G: The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem. 2004, 279: 16026-16032. 10.1074/jbc.M313556200.
Article
PubMed
CAS
Google Scholar
Kabuyama Y, Langer SJ, Polvinen K, Homma Y, Resing KA, Ahn NG: Functional proteomics identifies protein-tyrosine phosphatase 1B as a target of RhoA signaling. Mol Cell Proteomics. 2006, 5: 1359-1367. 10.1074/mcp.M600101-MCP200.
Article
PubMed
CAS
Google Scholar
Chacon PJ, Arevalo MA, Tebar AR: NGF-activated protein tyrosine phosphatase 1B mediates the phosphorylation and degradation of I-kappa-Balpha coupled to NF-kappa-B activation, thereby controlling dendrite morphology. Mol Cell Neurosci. 2010, 43: 384-393. 10.1016/j.mcn.2010.01.005.
Article
PubMed
CAS
Google Scholar
Capsoni S, Cattaneo A: On the molecular basis linking Nerve Growth Factor (NGF) to Alzheimer's disease. Cell Mol Neurobiol. 2006, 26: 619-633. 10.1007/s10571-006-9112-2.
Article
PubMed
CAS
Google Scholar
Knowles JK, Rajadas J, Nguyen TV, Yang T, LeMieux MC, Vander GL, et al: The p75 neurotrophin receptor promotes amyloid-beta(1-42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci. 2009, 29: 10627-10637. 10.1523/JNEUROSCI.0620-09.2009.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chakravarthy B, Gaudet C, Menard M, Atkinson T, Brown L, Laferla FM, et al: Amyloid-beta peptides stimulate the expression of the p75(NTR) neurotrophin receptor in SHSY5Y human neuroblastoma cells and AD transgenic mice. J Alzheimers Dis. 2010, 19: 915-925.
PubMed
CAS
Google Scholar
Petratos S, Li QX, George AJ, Hou X, Kerr ML, Unabia SE, et al: The beta-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain. 2008, 131: 90-108. 10.1093/brain/awm260.
Article
PubMed
Google Scholar
Yamashita T, Fujitani M, Yamagishi S, Hata K, Mimura F: Multiple signals regulate axon regeneration through the Nogo receptor complex. Mol Neurobiol. 2005, 32: 105-111. 10.1385/MN:32:2:105.
Article
PubMed
CAS
Google Scholar
Boato F, Hendrix S, Huelsenbeck SC, Hofmann F, Grosse G, Djalali S, et al: C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. J Cell Sci. 2010, 123: 1652-1662. 10.1242/jcs.066050.
Article
PubMed
Google Scholar
Gonzenbach RR, Schwab ME: Disinhibition of neurite growth to repair the injured adult CNS: focusing on Nogo. Cell Mol Life Sci. 2008, 65: 161-176. 10.1007/s00018-007-7170-3.
Article
PubMed
CAS
Google Scholar
Huesa G, Baltrons MA, Gomez-Ramos P, Moran A, Garcia A, Hidalgo J, et al: Altered distribution of RhoA in Alzheimer's disease and AbetaPP overexpressing mice. J Alzheimers Dis. 2010, 19: 37-56.
PubMed
Google Scholar
Yip SC, Saha S, Chernoff J: PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci. 2010, 35: 442-449. 10.1016/j.tibs.2010.03.004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lin YC, Koleske AJ: Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu Rev Neurosci. 2010, 33: 349-378. 10.1146/annurev-neuro-060909-153204.
Article
PubMed
CAS
PubMed Central
Google Scholar
De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al: Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007, 282: 11590-11601. 10.1074/jbc.M607483200.
Article
PubMed
CAS
Google Scholar
Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, et al: Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008, 106: 45-55. 10.1111/j.1471-4159.2008.05347.x.
Article
PubMed
CAS
Google Scholar
Sorce S, Krause KH: NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009, 11: 2481-2504. 10.1089/ars.2009.2578.
Article
PubMed
CAS
Google Scholar
Aghajanian A, Wittchen ES, Campbell SL, Burridge K: Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One. 2009, 4: e8045-10.1371/journal.pone.0008045.
Article
PubMed
PubMed Central
Google Scholar
Salmeen A, Barford D: Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal. 2005, 7: 560-577. 10.1089/ars.2005.7.560.
Article
PubMed
CAS
Google Scholar
Bogeski I, Bozem M, Sternfeld L, Hofer HW, Schulz I: Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2+ influx following store depletion in HEK 293 cells. Cell Calcium. 2006, 40: 1-10. 10.1016/j.ceca.2006.03.003.
Article
PubMed
CAS
Google Scholar
Mahadev K, Zilbering A, Zhu L, Goldstein BJ: Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem. 2001, 276: 21938-21942. 10.1074/jbc.C100109200.
Article
PubMed
CAS
Google Scholar
Lee SR, Kwon KS, Kim SR, Rhee SG: Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998, 273: 15366-15372. 10.1074/jbc.273.25.15366.
Article
PubMed
CAS
Google Scholar
Sharma P, Chakraborty R, Wang L, Min B, Tremblay ML, Kawahara T, et al: Redox regulation of interleukin-4 signaling. Immunity. 2008, 29: 551-564. 10.1016/j.immuni.2008.07.019.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ravichandran LV, Chen H, Li Y, Quon MJ: Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol. 2001, 15: 1768-1780. 10.1210/me.15.10.1768.
Article
PubMed
CAS
Google Scholar
Tao J, Malbon CC, Wang HY: Insulin stimulates tyrosine phosphorylation and inactivation of protein-tyrosine phosphatase 1B in vivo. J Biol Chem. 2001, 276: 29520-29525. 10.1074/jbc.M103721200.
Article
PubMed
CAS
Google Scholar
Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK: Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem. 2004, 279: 37716-37725. 10.1074/jbc.M404606200.
Article
PubMed
CAS
Google Scholar
Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG: Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J. 1993, 12: 4843-4856.
PubMed
CAS
PubMed Central
Google Scholar
Stuible M, Doody KM, Tremblay ML: PTP1B and TC-PTP: regulators of transformation and tumorigenesis. Cancer Metastasis Rev. 2008, 27: 215-230. 10.1007/s10555-008-9115-1.
Article
PubMed
CAS
Google Scholar
Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, et al: Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006, 12: 917-924. 10.1038/nm1435.
Article
PubMed
CAS
Google Scholar
Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999, 283: 1544-1548. 10.1126/science.283.5407.1544.
Article
PubMed
CAS
Google Scholar
Zhang S, Zhang ZY: PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today. 2007, 12: 373-381. 10.1016/j.drudis.2007.03.011.
Article
PubMed
CAS
Google Scholar
Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al: Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA. 2010, 107: 7036-7041. 10.1073/pnas.1000645107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Balsamo J, Arregui C, Leung T, Lilien J: The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. J Cell Biol. 1998, 143: 523-532. 10.1083/jcb.143.2.523.
Article
PubMed
CAS
PubMed Central
Google Scholar
Goslin K, Banker G: Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol. 1989, 108: 1507-1516. 10.1083/jcb.108.4.1507.
Article
PubMed
CAS
Google Scholar
Green SH, Rydel RE, Connolly JL, Greene LA: PC12 cell mutants that possess low- but not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor. J Cell Biol. 1986, 102: 830-843. 10.1083/jcb.102.3.830.
Article
PubMed
CAS
Google Scholar
Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG: The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell. 1992, 68: 545-560. 10.1016/0092-8674(92)90190-N.
Article
PubMed
CAS
Google Scholar
Krueger NX, Streuli M, Saito H: Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J. 1990, 9: 3241-3252.
PubMed
CAS
PubMed Central
Google Scholar