Alzheimer's Association. Alzheimer's disease facts and figures. Alzheimers Dement. 2020;16:391–460. https://doi.org/10.1002/alz.12068.
Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bekris LM, Yu C-E, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23:213–27.
Article
PubMed
PubMed Central
Google Scholar
Reitz C, Rogaeva E, Beecham GW. Late-onset vs nonmendelian early-onset Alzheimer disease. Neurol Genet. 2020;6:e512.
Article
PubMed
PubMed Central
Google Scholar
Rabinovici GD. Late-onset Alzheimer Disease. Continuum (Minneap Minn). 2019;25:14–33.
Google Scholar
Cruchaga C, Chakraverty S, Mayo K, Vallania FLM, Mitra RD, Faber K, et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families. PLoS One. 2012;7:e31039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S, et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry. 2012;17:875–9.
Article
CAS
PubMed
Google Scholar
Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J, et al. Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement. 2018;14:205–14.
Article
PubMed
Google Scholar
Baker E, Escott-Price V. Polygenic risk scores in Alzheimer's disease: current applications and future directions. Front Digit Health. 2020;2:14.
Escott-Price V, Myers AJ, Huentelman M, Hardy J. Polygenic risk score analysis of pathologically confirmed Alzheimer disease. Ann Neurol. 2017;82:311–4.
Article
PubMed
PubMed Central
Google Scholar
Escott-Price V, Sims R, Bannister C, Harold D, Vronskaya M, Majounie E, et al. Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain. 2015;138:3673–84.
Article
PubMed
PubMed Central
Google Scholar
Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA, et al. Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. PLoS Med. 2017;14:e1002258.
Article
PubMed
PubMed Central
Google Scholar
Chouraki V, Reitz C, Maury F, Bis JC, Bellenguez C, Yu L, et al. Evaluation of a genetic risk score to improve risk prediction for Alzheimer's disease. J Alzheimers Dis. 2016;53:921–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gatz M, Reynolds CA, Fratiglioni L. Role of genes and environments for explaining alzheimer disease. Arch Gen Psychiatry. 2006;63:168–74.
Article
PubMed
Google Scholar
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45:1452–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cummings J. Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci. 2018;11:147–52.
Article
PubMed
Google Scholar
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6:37.
Article
PubMed
PubMed Central
Google Scholar
Harper AR, Nayee S, Topol EJ. Protective alleles and modifier variants in human health and disease. Nat Rev Genet. 2015;16:689–701.
Article
CAS
PubMed
Google Scholar
Montine TJ, Cholerton BA, Corrada MM, Edland SD, Flanagan ME, Hemmy LS, et al. Concepts for brain aging: resistance, resilience, reserve, and compensation. Alzheimers Res Ther. 2019;11:22.
Article
PubMed
PubMed Central
Google Scholar
Andrews SJ, Fulton-Howard B, Goate A. Protective variants in Alzheimer’s disease. Curr Genet Med Rep. 2019;7:1–12.
Article
PubMed
PubMed Central
Google Scholar
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MG. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26:33.
Article
PubMed
PubMed Central
Google Scholar
Hohman TJ, McLaren DG, Mormino EC, Gifford KA, Libon DJ, Jefferson AL. Asymptomatic Alzheimer disease: defining resilience. Neurology. 2016;87:2443–50.
Article
PubMed
PubMed Central
Google Scholar
Driscoll I, Troncoso J. Asymptomatic Alzheimers disease: a Prodrome or a state of resilience? Curr Alzheimer Res. 2011;8:330–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahimi J, Kovacs GG. Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther. 2014;6:82.
Article
PubMed
PubMed Central
Google Scholar
Sonnen JA, Santa Cruz K, Hemmy LS, Woltjer R, Leverenz JB, Montine KS, et al. Ecology of the aging human brain. Arch Neurol. 2011;68:1049–56.
Article
PubMed
PubMed Central
Google Scholar
Kotowski IK, Pertsemlidis A, Luke A, Cooper RS, Vega GL, Cohen JC, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet. 2006;78:410–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
PCSK9-inhibitor drug class that grew out of UTSW research becomes a game-changer for patient with extremely high cholesterol. https://www.utsouthwestern.edu/newsroom/articles/year-2016/pcsk9-patient-khera.html. Accessed 1 Sept 2020.
Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, et al. Missense variant in TREML2 protects against Alzheimer's disease. Neurobiol Aging. 2014;35:1510.e1519–1510.e1511.5100000000000001E5100000000000026.
Article
CAS
Google Scholar
Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet. 2017;49:1373–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arboleda-Velasquez JF, Lopera F, O’Hare M, Delgado-Tirado S, Marino C, Chmielewska N, et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019;25:1680–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollmer MA, Streffer JR, Lütjohann D, Tsolaki M, Iakovidou V, Hegi T, et al. Bergmann Kv, Nitsch RM, et al: ABCA1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer’s disease. Neurobiol Aging. 2003;24:421–6.
Article
CAS
PubMed
Google Scholar
Arenaza-Urquijo EM, Vemuri P. Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies. Neurology. 2018;90:695–703.
Article
PubMed
PubMed Central
Google Scholar
Andersen SL. Centenarians as models of resistance and resilience to Alzheimer’s disease and related dementias. Adv Geriatr Med Res. 2020;2:e200018.
PubMed
PubMed Central
Google Scholar
Stern Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 2012;11:1006–12.
Article
PubMed
PubMed Central
Google Scholar
Sharp ES, Gatz M. Relationship between education and dementia: an updated systematic review. Alzheimer Dis Assoc Disord. 2011;25:289–304.
Article
PubMed
PubMed Central
Google Scholar
Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448–60.
Article
PubMed
Google Scholar
Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16:1305–11.
Article
PubMed
Google Scholar
Ouellette AR, Neuner SM, Dumitrescu L, Anderson LC, Gatti DM, Mahoney ER, et al. Cross-species analyses identify Dlgap2 as a regulator of age-related cognitive decline and Alzheimer's dementia. Cell Rep. 2020;32:108091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature. 2012;488:96–9.
Article
CAS
PubMed
Google Scholar
Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. 1994;7:180–4.
Article
CAS
PubMed
Google Scholar
Belloy ME, Napolioni V, Han SS, Le Guen Y, Greicius MD. Initiative ftAsDN: Association of Klotho-VS Heterozygosity with risk of Alzheimer disease in individuals who carry APOE4. JAMA Neurol. 2020;77:849–62.
Article
PubMed
PubMed Central
Google Scholar
Ayers KL, Mirshahi UL, Wardeh AH, Murray MF, Hao K, Glicksberg BS, et al. A loss of function variant in CASP7 protects against Alzheimer’s disease in homozygous APOE ε4 allele carriers. BMC Genomics. 2016;17:445.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fehér Á, Giricz Z, Juhász A, Pákáski M, Janka Z, Kálmán J. ABCA1 rs2230805 and rs2230806 common gene variants are associated with Alzheimer's disease. Neurosci Lett. 2018;664:79–83.
Article
PubMed
CAS
Google Scholar
Sassi C, Nalls MA, Ridge PG, Gibbs JR, Ding J, Lupton MK, et al. ABCA7 p.G215S as potential protective factor for Alzheimer's disease. Neurobiol Aging. 2016;46:235.e231–235.e2359.
Article
CAS
Google Scholar
Zhang C-C, Wang H-F, Tan M-S, Wan Y, Zhang W, Zheng Z-J, et al. SORL1 is associated with the risk of late-onset Alzheimer’s disease: a replication study and meta-analyses. Mol Neurobiol. 2017;54:1725–32.
Article
CAS
PubMed
Google Scholar
Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW, et al. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. Genome Med. 2017;9:100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Santos-Rebouças CB, Gonçalves AP, dos Santos JM, Abdala BB, Motta LB, Laks J, et al. Pimentel MMG: rs3851179 polymorphism at 5′ to the PICALM gene is associated with Alzheimer and Parkinson diseases in Brazilian population. NeuroMolecular Med. 2017;19:293–9.
Article
PubMed
CAS
Google Scholar
Nho K, Kim S, Risacher SL, Shen L, Corneveaux JJ, Swaminathan S, et al. Protective variant for hippocampal atrophy identified by whole exome sequencing. Ann Neurol. 2015;77:547–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Farias FHG, Dube U, Del-Aguila JL, Mihindukulasuriya KA, Fernandez MV, et al. The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathol. 2020;139:45–61.
Article
CAS
PubMed
Google Scholar
Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, et al. Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer's disease data set. Neurobiol Aging. 2016;42:217.e217–3.
Article
CAS
Google Scholar
Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vorgas D, et al. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham heart study. JAMA Neurol. 2014;71:55–61.
Article
PubMed
PubMed Central
Google Scholar
Corder EH, Ghebremedhin E, Taylor MG, Thal DR, Ohm TG, Braak H. The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and APOE polymorphism. Ann N Y Acad Sci. 2004;1019:24–8.
Article
CAS
PubMed
Google Scholar
Zeng FF, Liu J, He H, Gao XP, Liao MQ, Yu XX, et al. Association of PICALM gene polymorphisms with Alzheimer's disease: evidence from an updated meta-analysis. Curr Alzheimer Res. 2019;16:1196–205.
Article
CAS
PubMed
Google Scholar
Masri I, Salami A, El Shamieh S. Bissar-Tadmouri N. rs3851179G>A in PICALM is protective against Alzheimer's disease in five different countries surrounding the Mediterranean. Curr Aging Sci. 2019;13:162–68.
APP. https://www.alzforum.org/mutations/app. Accessed 1 Apr 2021.
Benilova I, Gallardo R, Ungureanu AA, Castillo Cano V, Snellinx A, Ramakers M, et al. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation. J Biol Chem. 2014;289:30977–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maloney JA, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem. 2014;289:30990–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martiskainen H, Herukka S-K, Stančáková A, Paananen J, Soininen H, Kuusisto J, et al. Decreased plasma β-amyloid in the Alzheimer's disease APP A673T variant carriers. Ann Neurol. 2017;82:128–32.
Article
CAS
PubMed
Google Scholar
Mengel-From J, Jeune B, Pentti T, McGue M, Christensen K, Christiansen L. The APP A673T frequency differs between Nordic countries. Neurobiol Aging. 2015;36:2909.e2901–4.
Article
CAS
Google Scholar
Wang L-S, Naj AC, Graham RR, Crane PK, Kunkle BW, Cruchaga C, et al. Rarity of the Alzheimer disease-protective APP A673T variant in the United States. JAMA Neurol. 2015;72:209–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bamne MN, Demirci FY, Berman S, Snitz BE, Rosenthal SL, Wang X, et al. Investigation of an amyloid precursor protein protective mutation (A673T) in a north American case-control sample of late-onset Alzheimer's disease. Neurobiol Aging. 1779;2014(35):e1715–76.
Google Scholar
Liu YW, He YH, Zhang YX, Cai WW, Yang LQ, Xu LY, et al. Absence of A673T variant in APP gene indicates an alternative protective mechanism contributing to longevity in Chinese individuals. Neurobiol Aging. 2014;35:935.e911–32.
Google Scholar
Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9:106–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993;261:921–3.
Article
CAS
PubMed
Google Scholar
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993;43:1467–72.
Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:1977–81.
Safieh M, Korczyn AD, Michaelson DM. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 2019;17:64.
Article
PubMed
PubMed Central
Google Scholar
Reiman EM, Arboleda-Velasquez JF, Quiroz YT, Huentelman MJ, Beach TG, Caselli RJ, et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11:667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu L, Zhao L. ApoE2 and Alzheimer's disease: time to take a closer look. Neural Regen Res. 2016;11:412–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Shue F, Zhao N, Shinohara M, Bu G. APOE2: protective mechanism and therapeutic implications for Alzheimer’s disease. Mol Neurodegener. 2020;15:63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao N, Liu C-C, Qiao W, Bu G. Apolipoprotein E, receptors, and modulation of Alzheimer's disease. Biol Psychiatry. 2018;83:347–57.
Article
CAS
PubMed
Google Scholar
Fu Y, Zhao J, Atagi Y, Nielsen HM, Liu C-C, Zheng H, et al. Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate proteoglycan. Mol Neurodegener. 2016;11:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Chamoun M, Savard M, et al. Association of Apolipoprotein E ε4 with medial temporal tau independent of amyloid-β. JAMA Neurol. 2020;77:470–9.
Article
PubMed
Google Scholar
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Savard M, Chamoun M, et al. APOEε4 potentiates the relationship between amyloid-β and tau pathologies. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0688-6. Online ahead of print.
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549:523–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamazaki Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a therapeutic target in Alzheimer's disease: a review of basic research and clinical evidence. CNS Drugs. 2016;30:773–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamazaki Y, Zhao N, Caulfield TR, Liu C-C, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15:501–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henneman P, van der Sman-de Beer F, Moghaddam PH, Huijts P, Stalenhoef AFH, Kastelein JJP, et al. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes. Eur J Hum Genet. 2009;17:620–8.
Article
CAS
PubMed
Google Scholar
Martínez-Martínez AB, Torres-Perez E, Devanney N, Del Moral R, Johnson LA, Arbones-Mainar JM. Beyond the CNS: the many peripheral roles of APOE. Neurobiol Dis. 2020;138:104809.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chernick D, Ortiz-Valle S, Jeong A, Qu W, Li L. Peripheral versus central nervous system APOE in Alzheimer's disease: interplay across the blood-brain barrier. Neurosci Lett. 2019;708:134306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams T, Borchelt DR, Chakrabarty P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol Neurodegener. 2020;15:8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewbank DC. Mortality differences by APOE genotype estimated from demographic synthesis. Genet Epidemiol. 2002;22:146–55.
Article
PubMed
Google Scholar
Huq AJ, Fransquet P, Laws SM, Ryan J, Sebra R, Masters CL, et al. Genetic resilience to Alzheimer's disease in APOE ε4 homozygotes: a systematic review. Alzheimers Dement. 2019;15:1612–23.
Article
PubMed
Google Scholar
Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A. 2002;99:856–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porter T, Burnham SC, Milicic L, Savage G, Maruff P, Lim YY, et al. Klotho allele status is not associated with Aβ and APOE ε4-related cognitive decline in preclinical Alzheimer's disease. Neurobiol Aging. 2019;76:162–5.
Article
CAS
PubMed
Google Scholar
de Vries CF, Staff RT, Harris SE, Chapko D, Williams DS, Reichert P, et al. Klotho, APOEε4, cognitive ability, brain size, atrophy, and survival: a study in the Aberdeen birth cohort of 1936. Neurobiol Aging. 2017;55:91–8.
Article
PubMed
Google Scholar
Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, et al. Life extension factor klotho enhances cognition. Cell Rep. 2014;7:1065–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoyama JS, Sturm VE, Bonham LW, Klein E, Arfanakis K, Yu L, et al. Variation in longevity gene KLOTHO is associated with greater cortical volumes. Ann Clin Transl Neurol. 2015;2:215–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erickson CM, Schultz SA, Oh JM, Darst BF, Ma Y, Norton D, et al. KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology. 2019;92:e1878–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubal DB, Yokoyama JS. Longevity gene KLOTHO and Alzheimer disease—a better fate for individuals who carry APOE ε4. JAMA Neurol. 2020;77:798–800.
Article
PubMed
Google Scholar
Dërmaku-Sopjani M, Kolgeci S, Abazi S, Sopjani M. Significance of the anti-aging protein Klotho. Mol Membr Biol. 2013;30:369–85.
Article
PubMed
CAS
Google Scholar
Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf EJ, Morrison FG, Sullivan DR, Logue MW, Guetta RE, Stone A, et al. The goddess who spins the thread of life: Klotho, psychiatric stress, and accelerated aging. Brain Behav Immun. 2019;80:193–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ullah M, Sun Z. Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol A Biol Sci Med Sci. 2019;74:1396–407.
Article
CAS
PubMed
Google Scholar
Kuang X, Zhou HJ, Thorne AH, Chen XN, Li LJ, Du JR. Neuroprotective effect of Ligustilide through induction of α-Secretase processing of both APP and Klotho in a mouse model of Alzheimer's disease. Front Aging Neurosci. 2017;9:353.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng CY, Yang TT, Zhou HJ, Zhao Y, Kuang X, Duan W, et al. Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer's disease-like pathology and cognitive deficits in mice. Neurobiol Aging. 2019;78:18–28.
Article
CAS
PubMed
Google Scholar
Simonovitch S, Schmukler E, Bespalko A, Iram T, Frenkel D, Holtzman DM, et al. Impaired autophagy in APOE4 astrocytes. J Alzheimers Dis. 2016;51:915–27.
Article
CAS
PubMed
Google Scholar
Parcon PA, Balasubramaniam M, Ayyadevara S, Jones RA, Liu L, Shmookler Reis RJ, et al. Apolipoprotein E4 inhibits autophagy gene products through direct, specific binding to CLEAR motifs. Alzheimers Dement. 2018;14:230–42.
Article
PubMed
Google Scholar
Zhao Y, Zeng C-Y, Li X-H, Yang T-T, Kuang X, Du J-R. Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13239.
CAS
PubMed Central
Google Scholar
Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, et al. Caspase signalling controls microglia activation and neurotoxicity. Nature. 2011;472:319–24.
Article
CAS
PubMed
Google Scholar
Roth KA. Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol. 2001;60:829–38.
Article
CAS
PubMed
Google Scholar
McKenzie BA, Fernandes JP, Doan MAL, Schmitt LM, Branton WG, Power C. Activation of the executioner caspases-3 and -7 promotes microglial pyroptosis in models of multiple sclerosis. J Neuroinflammation. 2020;17:253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohn TT, Head E. Caspases as therapeutic targets in Alzheimer's disease: is it time to "cut" to the chase? Int J Clin Exp Pathol. 2009;2:108–18.
CAS
PubMed
Google Scholar
Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280:38029–34.
Article
CAS
PubMed
Google Scholar
Chew H, Solomon VA, Fonteh AN. Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front Physiol. 2020;11:598.
Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Loss-of-function mutation in ABCA1 and risk of Alzheimer's disease and cerebrovascular disease. Alzheimers Dement. 2015;11:1430–8.
Article
PubMed
Google Scholar
Koldamova R, Fitz NF, Lefterov I. The role of ATP-binding cassette transporter A1 in Alzheimer's disease and neurodegeneration. Biochim Biophys Acta. 1801;2010:824–30.
Google Scholar
De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer's disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol. 2019;138:201–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andersen OM, Rudolph I-M, Willnow TE. Risk factor SORL1: from genetic association to functional validation in Alzheimer's disease. Acta Neuropathol. 2016;132:653–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer's disease. Front Physiol. 2013;4:45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitz NF, Cronican AA, Saleem M, Fauq AH, Chapman R, Lefterov I, et al. Abca1 deficiency affects Alzheimer's disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci. 2012;32:13125–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aikawa T, Holm M-L, Kanekiyo T. ABCA7 and pathogenic pathways of Alzheimer's disease. Brain Sci. 2018;8:27.
Article
PubMed Central
CAS
Google Scholar
Fu Y, Hsiao JH, Paxinos G, Halliday GM, Kim WS. ABCA7 mediates phagocytic clearance of amyloid-β in the brain. J Alzheimers Dis. 2016;54:569–84.
Article
CAS
PubMed
Google Scholar
Sakae N, Liu CC, Shinohara M, Frisch-Daiello J, Ma L, Yamazaki Y, et al. ABCA7 deficiency accelerates amyloid-β generation and Alzheimer's neuronal pathology. J Neurosci. 2016;36:3848–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim WS, Li H, Ruberu K, Chan S, Elliott DA, Low JK, et al. Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer's disease. J Neurosci. 2013;33:4387–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T, Takahashi K, et al. LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler Thromb Vasc Biol. 2001;21:1501–6.
Article
CAS
PubMed
Google Scholar
Yin RH, Yu JT, Tan L. The role of SORL1 in Alzheimer's disease. Mol Neurobiol. 2015;51:909–18.
Article
CAS
PubMed
Google Scholar
Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, et al. A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol. 2016;132:213–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holstege H, van der Lee SJ, Hulsman M, Wong TH, van Rooij JGJ, Weiss M, et al. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur J Hum Genet. 2017;25:973–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M, et al. Coding mutations in SORL1 and Alzheimer disease. Ann Neurol. 2015;77:215–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kölsch H, Jessen F, Wiltfang J, Lewczuk P, Dichgans M, Kornhuber J, et al. Influence of SORL1 gene variants: association with CSF amyloid-beta products in probable Alzheimer's disease. Neurosci Lett. 2008;440:68–71.
Article
PubMed
CAS
Google Scholar
Alexopoulos P, Guo L-H, Kratzer M, Westerteicher C, Kurz A, Perneczky R. Impact of SORL1 single nucleotide polymorphisms on Alzheimer's disease cerebrospinal fluid markers. Dement Geriatr Cogn Disord. 2011;32:164–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, et al. The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol Cell Neurosci. 2007;34:621–8.
Article
CAS
PubMed
Google Scholar
Donkin JJ, Stukas S, Hirsch-Reinshagen V, Namjoshi D, Wilkinson A, May S, et al. ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J Biol Chem. 2010;285:34144–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, et al. Membrane dynamics and organelle biogenesis—lipid pipelines and vesicular carriers. BMC Biol. 2017;15:102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marsh J, Alifragis P. Synaptic dysfunction in Alzheimer's disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res. 2018;13:616–23.
Article
PubMed
PubMed Central
Google Scholar
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener. 2019;14:20.
Article
PubMed
PubMed Central
Google Scholar
Mañucat-Tan NB, Saadipour K, Wang YJ, Bobrovskaya L, Zhou XF. Cellular trafficking of amyloid precursor protein in Amyloidogenesis physiological and pathological significance. Mol Neurobiol. 2019;56:812–30.
Article
PubMed
CAS
Google Scholar
Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr Alzheimer Res. 2015;12:32–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horak M, Petralia RS, Kaniakova M, Sans N. ER to synapse trafficking of NMDA receptors. Front Cell Neurosci. 2014;8:394.
Barr F, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol. 2010;22:461–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tavana JP, Rosene M, Jensen NO, Ridge PG, Kauwe JS, Karch CM. RAB10: an Alzheimer's disease resilience locus and potential drug target. Clin Interv Aging. 2018;14:73–9.
Article
PubMed
PubMed Central
Google Scholar
Mignogna ML, D'Adamo P. Critical importance of RAB proteins for synaptic function. Small GTPases. 2018;9:145–57.
Article
CAS
PubMed
Google Scholar
Baig S, Joseph SA, Tayler H, Abraham R, Owen MJ, Williams J, et al. Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol. 2010;69:1071–7.
Article
CAS
PubMed
Google Scholar
Xu W, Tan L, Yu J-T. The role of PICALM in Alzheimer’s disease. Mol Neurobiol. 2015;52:399–413.
Article
CAS
PubMed
Google Scholar
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009;41:1094–9.
Article
CAS
PubMed
Google Scholar
Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009;41:1088–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ando K, Brion JP, Stygelbout V, Suain V, Authelet M, Dedecker R, et al. Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer's brains. Acta Neuropathol. 2013;125:861–78.
Article
CAS
PubMed
Google Scholar
Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parikh I, Fardo DW, Estus S. Genetics of PICALM expression and Alzheimer's disease. PLoS One. 2014;9:e91242.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips K, et al. Targeting the synapse in Alzheimer’s disease. Front Neurosci. 2019;13:735.
Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism of long-term memory storage? npj Sci Learn. 2019;4:9.
Article
PubMed
PubMed Central
Google Scholar
Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling KH, et al. REST and neural gene network Dysregulation in iPSC models of Alzheimer's disease. Cell Rep. 2019;26:1112–1127.e1119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Z, Ure K, Ding P, Nashaat M, Yuan L, Ma J, et al. The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci. 2011;31:9772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song M, Martinowich K, Lee FS. BDNF at the synapse: why location matters. Mol Psychiatry. 2017;22:1370–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, et al. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A. 2004;101:10458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cunha C, Brambilla R, Thomas K. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010;3:1.
Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC-M. Decreased serum brain-derived Neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): a systematic review and meta-analysis. Int J Mol Sci. 2019;20:257.
Article
PubMed Central
CAS
Google Scholar
de Pins B, Cifuentes-Díaz C, Farah AT, López-Molina L, Montalban E, Sancho-Balsells A, et al. Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J Neurosci. 2019;39:2441.
PubMed
PubMed Central
Google Scholar
Wu CC, Lien CC, Hou WH, Chiang PM, Tsai KJ. Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer's disease. Sci Rep. 2016;6:27358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice. J Neurosci. 2010;30:14708–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ventriglia M, Bocchio Chiavetto L, Benussi L, Binetti G, Zanetti O, Riva MA, et al. Association between the BDNF 196 a/G polymorphism and sporadic Alzheimer's disease. Mol Psychiatry. 2002;7:136–7.
Article
CAS
PubMed
Google Scholar
Rogaeva E, Schmitt-Ulms G. Does BDNF Val66Met contribute to preclinical Alzheimer’s disease? Brain. 2016;139:2586–9.
Article
PubMed
Google Scholar
Lim YY, Hassenstab J, Cruchaga C, Goate A, Fagan AM, Benzinger TLS, et al. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer's disease. Brain. 2016;139:2766–77.
Article
PubMed
PubMed Central
Google Scholar
Lim YY, Hassenstab J, Goate A, Fagan AM, Benzinger TLS, Cruchaga C, et al. Effect of BDNFVal66Met on disease markers in dominantly inherited Alzheimer's disease. Ann Neurol. 2018;84:424–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim YY, Villemagne VL, Laws SM, Ames D, Pietrzak RH, Ellis KA, et al. Effect of BDNF Val66Met on memory decline and hippocampal atrophy in prodromal Alzheimer's disease: a preliminary study. PLoS One. 2014;9:e86498.
Article
PubMed
PubMed Central
CAS
Google Scholar
Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.
Article
CAS
PubMed
Google Scholar
Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Mol Brain. 2017;10:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chaudhry M, Wang X, Bamne MN, Hasnain S, Demirci FY, Lopez OL, et al. Genetic variation in imprinted genes is associated with risk of late-onset Alzheimer's disease. J Alzheimers Dis. 2015;44:989–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
DLGAP1. Accessed 5 March 2021. https://agora.ampadportal.org/genes/(genes-router:gene-details/ENSG00000170579). Accessed 5 Mar 2021.
Roselli F, Livrea P, Almeida OFX. CDK5 is essential for soluble amyloid β-induced degradation of GKAP and remodeling of the synaptic actin cytoskeleton. PLoS One. 2011;6:e23097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y). 2018;4:575–90.
Article
Google Scholar
Tsai AP, Dong C, Preuss C, Moutinho M, Lin PB-C, Hajicek N, et al. PLCG2 as a risk factor for Alzheimer’s disease. bioRxiv. 2020:2020.2005.2019.104216.
Efthymiou AG, Goate AM. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener. 2017;12:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 2011;43:429–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magno L, Lessard CB, Martins M, Lang V, Cruz P, Asi Y, et al. Alzheimer’s disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph. Alzheimers Res Ther. 2019;11:16.
Article
PubMed
PubMed Central
Google Scholar
van der Lee SJ, Conway OJ, Jansen I, Carrasquillo MM, Kleineidam L, van den Akker E, et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 2019;138:237–50.
Article
PubMed
PubMed Central
Google Scholar
Koss H, Bunney TD, Behjati S, Katan M. Dysfunction of phospholipase Cγ in immune disorders and cancer. Trends Biochem Sci. 2014;39:603–11.
Article
CAS
PubMed
Google Scholar
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer's disease. N Engl J Med. 2012;368:117–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu P, Constien R, Dear N, Katan M, Hanke P, Bunney TD, et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cγ2 that specifically increases external Ca<sup>2+</sup> entry. Immunity. 2005;22:451–65.
Article
PubMed
CAS
Google Scholar
Zheng H, Liu C-C, Atagi Y, Chen X-F, Jia L, Yang L, et al. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging. 2016;42:132–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol. 2009;21:38–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song Y-N, Li J-Q, Tan C-C, Wang H-F, Tan M-S, Cao X-P, et al. tAsDNI: TREML2 mutation mediate Alzheimer’s disease risk by altering neuronal degeneration. Front Neurosci. 2019;13:455.
Laurent C, Buée L, Blum D. Tau and neuroinflammation: what impact for Alzheimer's disease and Tauopathies? Biom J. 2018;41:21–33.
Google Scholar
Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM. Expression of novel Alzheimer's disease risk genes in control and Alzheimer's disease brains. PLoS One. 2012;7:e50976.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk. Sci Transl Med. 2019;11:eaau2291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Satoh J-i, Kino Y, Kawana N, Yamamoto Y, Ishida T, Saito Y, et al. TMEM106B expression is reduced in Alzheimer’s disease brains. Alzheimers Res Ther. 2014;6:17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M, et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011;76:467–74.
Article
CAS
PubMed
Google Scholar
Rhinn H, Abeliovich A. Differential aging analysis in human cerebral cortex identifies variants in TMEM106B and GRN that regulate aging phenotypes. Cell Syst. 2017;4:404–415.e405.
Article
CAS
PubMed
Google Scholar
Klein ZA, Takahashi H, Ma M, Stagi M, Zhou M, Lam TT, et al. Loss of TMEM106B ameliorates Lysosomal and Frontotemporal dementia-related phenotypes in Progranulin-deficient mice. Neuron. 2017;95:281–296.e286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren Y, van Blitterswijk M, Allen M, Carrasquillo MM, Reddy JS, Wang X, et al. TMEM106B haplotypes have distinct gene expression patterns in aged brain. Mol Neurodegener. 2018;13:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. Alzheimers Dement Transl Res Clin Interv. 2020;6:e12050.
Google Scholar
Bettcher BM, Kramer JH. Longitudinal inflammation, cognitive decline, and Alzheimer's disease: a mini-review. Clin Pharmacol Ther. 2014;96:464–9.
Article
CAS
PubMed
Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015;14:388–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumitrescu L, Mahoney ER, Mukherjee S, Lee ML, Bush WS, Engelman CD, et al. Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain. 2020;143:2561–75.
Article
PubMed
PubMed Central
Google Scholar
Holstege H, Hulsman M, Charbonnier C, Grenier-Boley B, Quenez O, Grozeva D, et al. Exome sequencing identifies novel AD-associated genes. Alzheimers Dement. 2020;16:e04159.
Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haworth CMA, Wright MJ, Luciano M, Martin NG, de Geus EJC, van Beijsterveldt CEM, et al. The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry. 2010;15:1112–20.
Article
CAS
PubMed
Google Scholar
Spengler M, Gottschling J, Hahn E, Tucker-Drob EM, Harzer C, Spinath FM. Does the heritability of cognitive abilities vary as a function of parental education? Evidence from a German twin sample. PLoS One. 2018;13:e0196597.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morris TT, Davies NM, Dorling D, Richmond RC, Smith GD. Examining the genetic influences of educational attainment and the validity of value-added measures of progress. bioRxiv. 2018:233635.
Kan KJ, Wicherts JM, Dolan CV, van der Maas HL. On the nature and nurture of intelligence and specific cognitive abilities: the more heritable, the more culture dependent. Psychol Sci. 2013;24:2420–8.
Article
PubMed
Google Scholar
Tucker-Drob EM, Briley DA, Harden KP. Genetic and environmental influences on cognition across development and context. Curr Dir Psychol Sci. 2013;22:349–55.
Article
PubMed
PubMed Central
Google Scholar
Snowdon DA, Kemper SJ, Mortimer JA, Greiner LH, Wekstein DR, Markesbery WR. Linguistic ability in early life and cognitive function and Alzheimer's disease in late life: findings From the Nun study. JAMA. 1996;275:528–32.
Article
CAS
PubMed
Google Scholar
Oveisgharan S, Wilson RS, Yu L, Schneider JA, Bennett DA. Association of Early-Life Cognitive Enrichment with Alzheimer Disease Pathological Changes and Cognitive Decline. JAMA Neurol. 2020;77:1217–24.
Article
PubMed
Google Scholar
Hohman TJ, Kaczorowski CC. Modifiable lifestyle factors in Alzheimer disease: an opportunity to transform the therapeutic landscape through Transdisciplinary collaboration. JAMA Neurol. 2020;77:1207–9.
Article
PubMed
Google Scholar
Sebastiani P, Gurinovich A, Nygaard M, Sasaki T, Sweigart B, Bae H, et al. APOE alleles and extreme human longevity. J Gerontol A. 2019;74:44–51.
Article
CAS
Google Scholar
Ryu S, Atzmon G, Barzilai N, Raghavachari N, Suh Y. Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mech Ageing Dev. 2016;155:7–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whittemore K, Vera E, Martínez-Nevado E, Sanpera C, Blasco MA. Telomere shortening rate predicts species life span. Proc Natl Acad Sci. 2019;116:15122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahoney ER, Dumitrescu L, Seto M, Nudelman KNH, Buckley RF, Gifford KA, et al. Telomere length associations with cognition depend on Alzheimer's disease biomarkers. Alzheimers Dement (N Y). 2019;5:883–90.
Article
Google Scholar
Andrew MK, Tierney MC. The puzzle of sex, gender and Alzheimer’s disease: why are women more often affected than men? Womens Health (Lond). 2018;14:1745506518817995.
CAS
Google Scholar
Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol. 2017;74:1178–89.
Hohman TJ, Dumitrescu L, Barnes LL, Thambisetty M, Beecham GW, Kunkle B, et al. Sex-specific effects of Apolipoprotein E with cerebrospinal fluid levels of tau. JAMA Neurol. 2018;75:989–98.
Koran MEI, Wagener M, Hohman TJ, Alzheimer’s Neuroimaging I. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav. 2017;11:205–13.
Article
PubMed
PubMed Central
Google Scholar
Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry. 2005;62:685–91.
Article
PubMed
Google Scholar
Buckley RF, Mormino EC, Rabin JS, Hohman TJ, Landau S, Hanseeuw BJ, et al. Sex differences in the Association of Global Amyloid and Regional tau Deposition Measured by positron emission tomography in clinically Normal older adults. JAMA Neurol. 2019;76:542–51.
Article
PubMed
PubMed Central
Google Scholar
Buckley RF, Scott MR, Jacobs HIL, Schultz AP, Properzi MJ, Amariglio RE, et al. Sex mediates relationships between regional tau pathology and cognitive decline. Ann Neurol. 2020;88:921–32.
Deming Y, Dumitrescu L, Barnes LL, Thambisetty M, Kunkle B, Gifford KA, et al. Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol. 2018;136:857–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, Bush WS, et al. Sex differences in the genetic predictors of Alzheimer’s pathology. Brain. 2019;142:2581–9.
Article
PubMed
PubMed Central
Google Scholar
Dumitrescu L, Mayeda ER, Sharman K, Moore AM, Hohman TJ. Sex differences in the genetic architecture of Alzheimer’s disease. Curr Genet Med Rep. 2019;7:13–21.
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al. Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 2019;570:332–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubal DB. Chapter 16 - sex difference in Alzheimer’s disease: an updated, balanced and emerging perspective on differing vulnerabilities. In: Lanzenberger R, Kranz GS, Savic I, editors. Handbook of clinical neurology, vol. 175. Cambridge: Elsevier; 2020. p. 261–73.
Google Scholar