Belloy ME, Napolioni V, Greicius MD. A quarter century of APOE and Alzheimer's disease: Progress to date and the path forward. Neuron. 2019;101(5):820–38. https://doi.org/10.1016/j.neuron.2019.01.056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat Rev Neurol. 2013;9(2):106–18. https://doi.org/10.1038/nrneurol.2012.263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riedel BC, Thompson PM, Brinton RD. Age, APOE and sex: triad of risk of Alzheimer's disease. J Steroid Biochem Mol Biol. 2016;160:134–47. https://doi.org/10.1016/j.jsbmb.2016.03.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease Meta analysis consortium. Jama. 1997;278(16):1349–56.
Article
CAS
PubMed
Google Scholar
Payami H, Montee KR, Kaye JA, Bird TD, Yu CE, Wijsman EM, et al. Alzheimer’s disease, apolipoprotein E4, and gender. Jama. 1994;271(17):1316–7. https://doi.org/10.1001/jama.1994.03510410028015.
Article
CAS
PubMed
Google Scholar
Altmann A, Tian L, Henderson VW, Greicius MD. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75(4):563–73. https://doi.org/10.1002/ana.24135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hohman TJ, Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, et al. Sex-specific Association of Apolipoprotein E with Cerebrospinal Fluid Levels of tau. JAMA neurology. 2018;75(8):989–98. https://doi.org/10.1001/jamaneurol.2018.0821.
Article
PubMed
PubMed Central
Google Scholar
Fleisher A, Grundman M, Jack CR Jr, Petersen RC, Taylor C, Kim HT, et al. Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment. Arch Neurol. 2005;62(6):953–7. https://doi.org/10.1001/archneur.62.6.953.
Article
PubMed
Google Scholar
Liu C-C, Zhao N, Fu Y, Wang N, Linares C, Tsai C-W, et al. ApoE4 Accelerates Early Seeding of Amyloid Pathology. Neuron. 2017;96(5)):1024–1032.e1023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, et al. Apolipoprotein E–dependent accumulation of Alzheimer disease–related lesions begins in middle age. Ann Neurol. 2009;65(6):650–7. https://doi.org/10.1002/ana.21696.
Article
CAS
PubMed
Google Scholar
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7. https://doi.org/10.1038/nature24016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farfel JM, Yu L, De Jager PL, Schneider JA, Bennett DA. Association of APOE with tau-tangle pathology with and without β-amyloid. Neurobiol Aging. 2016;37:19–25. https://doi.org/10.1016/j.neurobiolaging.2015.09.011.
Article
CAS
PubMed
Google Scholar
Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49(3):390–8. https://doi.org/10.2967/jnumed.107.045385.
Article
PubMed
Google Scholar
Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A. 2000;97(11):6037–42. https://doi.org/10.1073/pnas.090106797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paranjpe MD, Chen X, Liu M, Paranjpe I, Leal JP, Wang R, et al. The effect of ApoE ε4 on longitudinal brain region-specific glucose metabolism in patients with mild cognitive impairment: a FDG-PET study. NeuroImage: Clinical. 2019;22:101795. https://doi.org/10.1016/j.nicl.2019.101795.
Article
Google Scholar
Protas HD, Chen K, Langbaum JB, Fleisher AS, Alexander GE, Lee W, et al. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 2013;70(3):320–5. https://doi.org/10.1001/2013.jamaneurol.286.
Article
PubMed
PubMed Central
Google Scholar
Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci U S A. 2004;101(1):284–9. https://doi.org/10.1073/pnas.2635903100.
Article
CAS
PubMed
Google Scholar
Martínez-Martínez AB, Torres-Perez E, Devanney N, Del Moral R, Johnson LA, Arbones-Mainar JM. Beyond the CNS: the many peripheral roles of APOE. Neurobiol Dis. 2020;138:104809. https://doi.org/10.1016/j.nbd.2020.104809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL, et al. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem. 1997;272(29):17972–80. https://doi.org/10.1074/jbc.272.29.17972.
Article
CAS
PubMed
Google Scholar
Farmer BC, Johnson LA, Hanson AJ. Effects of apolipoprotein E on nutritional metabolism in dementia. Curr Opin Lipidol. 2019;30(1):10–5. https://doi.org/10.1097/MOL.0000000000000566.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson LA, Torres ERS, Impey S, Stevens JF, Raber J. Apolipoprotein E4 and insulin resistance interact to impair cognition and Alter the epigenome and metabolome. Sci Rep. 2017;7(1):43701. https://doi.org/10.1038/srep43701.
Article
PubMed
PubMed Central
Google Scholar
Zhao N, Liu CC, Van Ingelgom AJ, Martens YA, Linares C, Knight JA, et al. Apolipoprotein E4 Impairs Neuronal Insulin Signaling by Trapping Insulin Receptor in the Endosomes. Neuron. 2017;96(1):115–129.e115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huebbe P, Dose J, Schloesser A, Campbell G, Gluer CC, Gupta Y, et al. Apolipoprotein E (APOE) genotype regulates body weight and fatty acid utilization-studies in gene-targeted replacement mice. Mol Nutr Food Res. 2015;59(2):334–43. https://doi.org/10.1002/mnfr.201400636.
Article
CAS
PubMed
Google Scholar
Weir JBDB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):1–9. https://doi.org/10.1113/jphysiol.1949.sp004363.
Article
PubMed
PubMed Central
Google Scholar
Berteau-Pavy F, Park B, Raber J. Effects of sex and APOE ε4 on object recognition and spatial navigation in the elderly. Neuroscience. 2007;147(1):6–17. https://doi.org/10.1016/j.neuroscience.2007.03.005.
Article
CAS
PubMed
Google Scholar
Horner NK, Lampe JW, Patterson RE, Neuhouser ML, Beresford SA, Prentice RL. Indirect calorimetry protocol development for measuring resting metabolic rate as a component of total energy expenditure in free-living postmenopausal women. J Nutr. 2001;131(8):2215–8. https://doi.org/10.1093/jn/131.8.2215.
Article
CAS
PubMed
Google Scholar
Popp CJ, Tisch JJ, Sakarcan KE, Bridges WC, Jesch ED. Approximate time to steady-state resting energy expenditure using indirect calorimetry in young. Healthy Adults Front Nutr. 2016;3:49.
PubMed
Google Scholar
Andres DA, LEA Y, Veeranki S, Hawkinson TR, Levitan BM, He D, et al. Improved workflow for mass spectrometry-based metabolomics analysis of the heart. J Biol Chem. 2020;295(9):2676–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics. 2016;55:14.10.11–91.
Article
Google Scholar
Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8(1):663. https://doi.org/10.1038/s41598-017-19120-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duman BS, Ozturk M, Yilmazer S, Hatemi H. Apolipoprotein E polymorphism in Turkish subjects with type 2 diabetes mellitus: allele frequency and relation to serum lipid concentrations. Diabetes Nutr Metab. 2004;17(5):267–74.
CAS
PubMed
Google Scholar
Elosua R, Demissie S, Cupples LA, Meigs JB, Wilson PW, Schaefer EJ, et al. Obesity modulates the association among APOE genotype, insulin, and glucose in men. Obes Res. 2003;11(12):1502–8. https://doi.org/10.1038/oby.2003.201.
Article
CAS
PubMed
Google Scholar
Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Differential modulation of diet-induced obesity and adipocyte functionality by human apolipoprotein E3 and E4 in mice. Int J Obes. 2008;32(10):1595–605.
Article
CAS
Google Scholar
Johnson LA, Olsen RH, Merkens LS, DeBarber A, Steiner RD, Sullivan PM, et al. Apolipoprotein E-low density lipoprotein receptor interaction affects spatial memory retention and brain ApoE levels in an isoform-dependent manner. Neurobiol Dis. 2014;64:150–62. https://doi.org/10.1016/j.nbd.2013.12.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knouff C, Hinsdale ME, Mezdour H, Altenburg MK, Watanabe M, Quarfordt SH, et al. Apo E structure determines VLDL clearance and atherosclerosis risk in mice. J Clin Invest. 1999;103(11):1579–86. https://doi.org/10.1172/JCI6172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan PM, Mezdour H, Quarfordt SH, Maeda N. Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. J Clin Invest. 1998;102(1):130–5. https://doi.org/10.1172/JCI2673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer's disease. Neuron. 2009;63(3):287–303. https://doi.org/10.1016/j.neuron.2009.06.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jolivet R, Magistretti PJ, Weber B. Deciphering neuron-glia compartmentalization in cortical energy metabolism. Front Neuroenerg. 2009;1:4–4.
Article
Google Scholar
Fan J, Shimizu Y, Chan J, Wilkinson A, Ito A, Tontonoz P, et al. Hormonal modulators of glial ABCA1 and apoE levels. J Lipid Res. 2013;54(11):3139–50. https://doi.org/10.1194/jlr.M042473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Fu Y, Liu CC, Shinohara M, Nielsen HM, Dong Q, et al. Retinoic acid isomers facilitate apolipoprotein E production and lipidation in astrocytes through the retinoid X receptor/retinoic acid receptor pathway. J Biol Chem. 2014;289(16):11282–92. https://doi.org/10.1074/jbc.M113.526095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J, et al. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J Neurosci. 2010;30(50):17068–78. https://doi.org/10.1523/JNEUROSCI.4067-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Early AN, Gorman AA, Van Eldik LJ, Bachstetter AD, Morganti JM. Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J Neuroinflammation. 2020;17(1):115. https://doi.org/10.1186/s12974-020-01800-w. PMID: 32290848; PMCID: PMC7158022.
Huynh FK, Green MF, Koves TR, Hirschey MD. Measurement of fatty acid oxidation rates in animal tissues and cell lines. Methods Enzymol. 2014;542:391–405. https://doi.org/10.1016/B978-0-12-416618-9.00020-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farmer BC, Walsh AE, Kluemper JC, Johnson LA. Lipid Droplets in Neurodegenerative Disorders. Front Neurosci. 2020;14:742. https://doi.org/10.3389/fnins.2020.00742.
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724–38. https://doi.org/10.1016/j.cmet.2011.08.016.
Morikawa M, Fryer JD, Sullivan PM, Christopher EA, Wahrle SE, DeMattos RB, et al. Production and characterization of astrocyte-derived human apolipoprotein E isoforms from immortalized astrocytes and their interactions with amyloid-beta. Neurobiol Dis. 2005;19(1–2):66–76. https://doi.org/10.1016/j.nbd.2004.11.005.
Article
CAS
PubMed
Google Scholar
Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85. https://doi.org/10.1016/j.cmet.2018.03.008.
Article
CAS
PubMed
Google Scholar
Scott C. Misconceptions about aerobic and anaerobic energy expenditure. J Int Soc Sports Nutr. 2005;2(2):32–7. https://doi.org/10.1186/1550-2783-2-2-32.
Article
PubMed
PubMed Central
Google Scholar
Troubat N, Fargeas-Gluck M-A, Tulppo M, Dugué B. The stress of chess players as a model to study the effects of psychological stimuli on physiological responses: an example of substrate oxidation and heart rate variability in man. Eur J Appl Physiol. 2009;105(3):343–9. https://doi.org/10.1007/s00421-008-0908-2.
Article
PubMed
Google Scholar
Al-Naher A, Schlaghecken F, Barber TM, et al. Modulation of Metabolic Rate in Response to a Simple Cognitive Task. Arch Med. 2016;8(4):1–7. https://doi.org/10.21767/1989-5216.1000153.
Reed GW, Hill JO. Measuring the thermic effect of food. Am J Clin Nutr. 1996;63(2):164–9. https://doi.org/10.1093/ajcn/63.2.164.
Article
CAS
PubMed
Google Scholar
Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care. 2004;7(6):599–605. https://doi.org/10.1097/00075197-200411000-00003.
Article
PubMed
Google Scholar
Williams HC, Farmer BC, Piron MA, Walsh AE, Bruntz RC, Gentry MS, et al. APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiol Dis. 2020;136:104742. https://doi.org/10.1016/j.nbd.2020.104742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orr AL, Kim C, Jimenez-Morales D, Newton BW, Johnson JR, Krogan NJ, et al. Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J Alzheimers Dis. 2019;68(3):991–1011. https://doi.org/10.3233/JAD-181184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F. ApoE4 impairs neuron-astrocyte coupling of fatty acid metabolism. Cell Rep. 2021;34(1):108572. https://doi.org/10.1016/j.celrep.2020.108572.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konttinen H, Cabral-da-Silva MEC, Ohtonen S, Wojciechowski S, Shakirzyanova A, Caligola S, et al. PSEN1ΔE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia. Stem Cell Reports. 2019;13(4):669–83. https://doi.org/10.1016/j.stemcr.2019.08.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: the role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol. 2020;329:113310. https://doi.org/10.1016/j.expneurol.2020.113310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonntag KC, Ryu WI, Amirault KM, Healy RA, Siegel AJ, McPhie DL, et al. Late-onset Alzheimer's disease is associated with inherent changes in bioenergetics profiles. Sci Rep. 2017;7(1):14038. https://doi.org/10.1038/s41598-017-14420-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goyal MS, Vlassenko AG, Blazey TM, Su Y, Couture LE, Durbin TJ, et al. Loss of Brain Aerobic Glycolysis in Normal Human Aging. Cell Metab. 2017;26(2):353–360.e353.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magistretti PJ. Imaging brain aerobic glycolysis as a marker of synaptic plasticity. Proc Natl Acad Sci U S A. 2016;113(26):7015–6. https://doi.org/10.1073/pnas.1607423113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, et al. Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proc Natl Acad Sci. 2010;107(41):17763–7. https://doi.org/10.1073/pnas.1010461107.
Article
PubMed
PubMed Central
Google Scholar
Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26(5):769–80. https://doi.org/10.1038/s41591-020-0815-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newington JT, Harris RA, Cumming RC. Reevaluating metabolism in Alzheimer’s disease from the perspective of the astrocyte-neuron lactate shuttle model. J Neurodegener Dis. 2013;2013:234572.
PubMed
PubMed Central
Google Scholar
Tabernero A, Vicario C, Medina JM. Lactate spares glucose as a metabolic fuel in neurons and astrocytes from primary culture. Neurosci Res. 1996;26(4):369–76. https://doi.org/10.1016/S0168-0102(96)01121-2.
Article
CAS
PubMed
Google Scholar
Rasmussen P, Wyss MT, Lundby C. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 2011;25(9):2865–73. https://doi.org/10.1096/fj.11-183822.
Article
CAS
PubMed
Google Scholar
Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006;24(6):1687–94. https://doi.org/10.1111/j.1460-9568.2006.05056.x.
Article
PubMed
Google Scholar
Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA. Lactate: a preferred fuel for human brain metabolism in vivo. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2003;23(6):658–64. https://doi.org/10.1097/01.WCB.0000063991.19746.11.
Article
CAS
Google Scholar
Perkins M, Wolf AB, Chavira B, Shonebarger D, Meckel JP, Leung L, et al. Altered energy metabolism pathways in the posterior cingulate in young adult apolipoprotein E ɛ4 carriers. J Alzheimers Dis. 2016;53(1):95–106. https://doi.org/10.3233/JAD-151205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barros LF, Ruminot I, San Martín A, Lerchundi R, Fernández-Moncada I, Baeza-Lehnert F. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur. Neurochem Res. 2021;46(1):15–22. https://doi.org/10.1007/s11064-020-02964-w. Epub 2020 Jan 24.
Smith RL, Soeters MR, Wust RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39(4):489–517. https://doi.org/10.1210/er.2017-00211.
Article
PubMed
PubMed Central
Google Scholar
Jackson SL, Safo SE, Staimez LR, Olson DE, Narayan KMV, Long Q, et al. Glucose challenge test screening for prediabetes and early diabetes. Diabet Med. 2017;34(5):716–24. https://doi.org/10.1111/dme.13270.
Article
CAS
PubMed
Google Scholar
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2011;7(3):280–92. https://doi.org/10.1016/j.jalz.2011.03.003.
Article
Google Scholar
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Gotz J. Amyloid-beta and tau complexity - towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14(1):22–39. https://doi.org/10.1038/nrneurol.2017.162.
Article
CAS
PubMed
Google Scholar
Golde TE, DeKosky ST, Galasko D. Alzheimer's disease: The right drug, the right time. Science (New York, NY). 2018;362(6420):1250.
Article
CAS
Google Scholar
Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628–34. https://doi.org/10.1152/jappl.1983.55.2.628.
Article
CAS
PubMed
Google Scholar
McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenter Enteral Nutr. 2003;27(1):21–6. https://doi.org/10.1177/014860710302700121.
Article
PubMed
Google Scholar