Beyreuther K, Masters CL. Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer’s disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol Zurich Switz. 1991 Jul;1(4):241–51.
CAS
Google Scholar
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991 Oct;12(10):383–8.
CAS
PubMed
Google Scholar
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002 Jul 19;297(5580):353–6.
CAS
PubMed
Google Scholar
Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem. 2016;139(Suppl 2):237–52.
CAS
PubMed
Google Scholar
Efthymiou AG, Goate AM. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener [Internet]. 2017 Dec [cited 2020 Apr 9];12(1). Available from: http://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-017-0184-x
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–30.
CAS
PubMed
PubMed Central
Google Scholar
Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science. 2020 Oct 2;370(6512):61–6.
CAS
PubMed
Google Scholar
Chen W-T, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, et al. Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease. Cell. 2020 Aug;182(4):976–991.e19.
CAS
PubMed
Google Scholar
De Strooper B, Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016 Feb;164(4):603–15.
PubMed
Google Scholar
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, et al. Harnessing endophenotypes and network medicine for Alzheimer’s drug repurposing. Med Res Rev. 2020 Nov;40(6):2386–426.
CAS
PubMed
PubMed Central
Google Scholar
Sierksma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E, et al. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol Med [Internet]. 2020 Mar 6 [cited 2020 Nov 18];12(3). Available from: https://onlinelibrary.wiley.com/doi/abs/10.15252/emmm.201910606
Fessel J. Alzheimer’s disease combination treatment. Neurobiol Aging. 2018 Mar;63:165.
PubMed
Google Scholar
Cummings JL, Tong G, Ballard C. Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J Alzheimers Dis. 2019 Feb 12;67(3):779–94.
PubMed
PubMed Central
Google Scholar
Frei E, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J, et al. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood. 1965 Nov;26(5):642–56.
PubMed
Google Scholar
Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017 Jun 6;8(23):38022–43.
PubMed Central
Google Scholar
Maramai S, Benchekroun M, Gabr MT, Yahiaoui S. Multitarget Therapeutic Strategies for Alzheimer’s Disease: Review on Emerging Target Combinations. BioMed Res Int. 2020;2020 Jul 3:1–27.
Google Scholar
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, et al. Precision pharmacology for Alzheimer’s disease. Pharmacol Res. 2018;130:331–65.
CAS
PubMed
PubMed Central
Google Scholar
Salloway SP, Sevingy J, Budur K, Pederson JT, DeMattos RB, Von Rosenstiel P, et al. Advancing combination therapy for Alzheimer’s disease. Alzheimers Dement Transl Res Clin Interv [Internet]. 2020 Jan [cited 2021 May 19];6(1). Available from: https://onlinelibrary.wiley.com/doi/10.1002/trc2.12073
Cummings J, Lee G, Zhong K, Fonseca J, Taghva K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement Transl Res Clin Interv [Internet]. 2021 Jan [cited 2021 May 25];7(1). Available from: https://onlinelibrary.wiley.com/doi/10.1002/trc2.12179
Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol Neurodegener [Internet]. 2021 Dec [cited 2021 May 25];16(1). Available from: https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-021-00424-9
Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009 Jan;136(2):215–33.
CAS
PubMed
PubMed Central
Google Scholar
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015 Jul;16(7):421–33.
CAS
PubMed
Google Scholar
Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008 Sep;455(7209):64–71.
CAS
PubMed
PubMed Central
Google Scholar
Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Blüthgen N, Marks DS, et al. MicroRNA control of protein expression noise. Science. 2015 Apr 3;348(6230):128–32.
CAS
PubMed
Google Scholar
Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep [Internet]. 2016 Dec [cited 2020 Apr 14];6(1). Available from: http://www.nature.com/articles/srep36766
Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW. A MicroRNA Imparts Robustness against Environmental Fluctuation during Development. Cell. 2009 Apr;137(2):273–82.
CAS
PubMed
PubMed Central
Google Scholar
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA. Science. 2007 Apr 27;316(5824):575–9.
PubMed
Google Scholar
Erhard F, Haas J, Lieber D, Malterer G, Jaskiewicz L, Zavolan M, et al. Widespread context dependency of microRNA-mediated regulation. Genome Res. 2014 Jun 1;24(6):906–19.
CAS
PubMed
PubMed Central
Google Scholar
Hsin J-P, Lu Y, Loeb GB, Leslie CS, Rudensky AY. The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types. Nat Immunol. 2018 Oct;19(10):1137–45.
CAS
PubMed
PubMed Central
Google Scholar
Juźwik CA, Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol. 2019;182:101664.
PubMed
Google Scholar
Nam J-W, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, et al. Global Analyses of the Effect of Different Cellular Contexts on MicroRNA Targeting. Mol Cell. 2014 Mar;53(6):1031–43.
CAS
PubMed
PubMed Central
Google Scholar
Swarup V, Hinz FI, Rexach JE, Noguchi K-I, Toyoshiba H, Oda A, et al. Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nat Med. 2019;25(1):152–64.
CAS
PubMed
Google Scholar
Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol Med. 2016 Sep;8(9):1005–18.
CAS
PubMed
PubMed Central
Google Scholar
Wilk G, Braun R. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer. Nucleic Acids Res. 2018 Feb 16;46(3):1089–101.
CAS
PubMed
Google Scholar
Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, et al. MicroRNA expression in the adult mouse central nervous system. RNA N Y N. 2008 Mar;14(3):432–44.
CAS
Google Scholar
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007 Jun 29;129(7):1401–14.
CAS
PubMed
PubMed Central
Google Scholar
Olsen L, Klausen M, Helboe L, Nielsen FC, Werge T. MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats. PloS One. 2009 Oct 6;4(10):e7225.
PubMed
PubMed Central
Google Scholar
Barca-Mayo O, De Pietri Tonelli D. Convergent microRNA actions coordinate neocortical development. Cell Mol Life Sci CMLS. 2014 Aug;71(16):2975–95.
CAS
PubMed
Google Scholar
Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA N Y N. 2003 Oct;9(10):1274–81.
CAS
Google Scholar
Christensen M, Schratt GM. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neurosci Lett. 2009 Dec;466(2):55–62.
CAS
PubMed
Google Scholar
Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016 Mar;17(3):160–72.
CAS
PubMed
PubMed Central
Google Scholar
Scott H. Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal. 2017 Dec;1(4):NS20170112.
PubMed
PubMed Central
Google Scholar
Soreq H, Wolf Y. NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med. 2011 Oct;17(10):548–55.
CAS
PubMed
Google Scholar
Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009 Apr;12(4):399–408.
CAS
PubMed
PubMed Central
Google Scholar
Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y, et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci. 2011 Sep;14(9):1125–34.
CAS
PubMed
Google Scholar
Franke K, Otto W, Johannes S, Baumgart J, Nitsch R, Schumacher S. miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling: RhoG reduces neuronal process complexity. EMBO J. 2012 Jun 29;31(13):2908–21.
CAS
PubMed
PubMed Central
Google Scholar
Gascon E, Lynch K, Ruan H, Almeida S, Verheyden JM, Seeley WW, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014 Dec;20(12):1444–51.
CAS
PubMed
PubMed Central
Google Scholar
Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU.1 pathway. Nat Med. 2011 Jan;17(1):64–70.
CAS
PubMed
Google Scholar
Veremeyko T, Kuznetsova IS, Dukhinova M. W. Y. Yung A, Kopeikina E, Barteneva NS, et al. Neuronal extracellular microRNAs miR-124 and miR-9 mediate cell–cell communication between neurons and microglia. J Neurosci Res. 2019 Feb;97(2):162–84.
CAS
PubMed
Google Scholar
Fernandes A, Ribeiro AR, Monteiro M, Garcia G, Vaz AR, Brites D. Secretome from SH-SY5Y APPSwe cells trigger time-dependent CHME3 microglia activation phenotypes, ultimately leading to miR-21 exosome shuttling. Biochimie. 2018 Dec;155:67–82.
CAS
PubMed
Google Scholar
Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci. 2007 Dec;10(12):1513–4.
CAS
PubMed
Google Scholar
Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci. 2010 Nov 23;107(47):20382–7.
CAS
PubMed
PubMed Central
Google Scholar
Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng H-YM, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci. 2008 Jul 1;105(26):9093–8.
CAS
PubMed
PubMed Central
Google Scholar
Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16426–31.
CAS
PubMed
PubMed Central
Google Scholar
Luikart BW, Bensen AL, Washburn EK, Perederiy JV, Su KG, Li Y, et al. miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PloS One. 2011;6(5):e19077.
CAS
PubMed
PubMed Central
Google Scholar
Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience. 2010 Feb;165(4):1301–11.
CAS
PubMed
Google Scholar
Mellios N, Sugihara H, Castro J, Banerjee A, Le C, Kumar A, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci. 2011 Oct;14(10):1240–2.
CAS
PubMed
PubMed Central
Google Scholar
Remenyi J, van den Bosch MWM, Palygin O, Mistry RB, McKenzie C, Macdonald A, et al. miR-132/212 Knockout Mice Reveal Roles for These miRNAs in Regulating Cortical Synaptic Transmission and Plasticity. Preiss T, editor. PLoS ONE. 2013 Apr 26;8(4):e62509.
Wei Z, Meng X, El Fatimy R, Sun B, Mai D, Zhang J, et al. Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiol Dis. 2020 Feb;134:104617.
CAS
PubMed
Google Scholar
Wong H-KA, Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, et al. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet. 2013 Aug 1;22(15):3077–92.
CAS
PubMed
Google Scholar
El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, et al. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol (Berl). 2018 Oct;136(4):537–55.
Google Scholar
Hernandez-Rapp J, Smith PY, Filali M, Goupil C, Planel E, Magill ST, et al. Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav Brain Res. 2015 Jul;287:15–26.
CAS
PubMed
Google Scholar
Salta E, De Strooper B. microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J Off Publ Fed Am Soc Exp Biol. 2017;31(2):424–33.
CAS
Google Scholar
Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, et al. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet. 2015 Dec 1;24(23):6721–35.
CAS
PubMed
PubMed Central
Google Scholar
Hansen KF, Sakamoto K, Aten S, Snider KH, Loeser J, Hesse AM, et al. Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome. Learn Mem. 2016 Feb;23(2):61–71.
CAS
PubMed
PubMed Central
Google Scholar
Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K. miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct. 2013 May;218(3):817–31.
PubMed
Google Scholar
Walgrave H, Balusu S, Snoeck S, Vanden Eynden E, Craessaerts K, Thrupp N, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell [Internet]. 2021 May [cited 2021 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1934590921002198
Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M, Chan EKL. Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol Baltim Md 1950. 2013 Feb 1;190(3):1250–1263.
Kong H, Yin F, He F, Omran A, Li L, Wu T, et al. The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation. J Mol Neurosci. 2015 Sep;57(1):28–37.
CAS
PubMed
Google Scholar
Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, et al. MicroRNA-132 Potentiates Cholinergic Anti-Inflammatory Signaling by Targeting Acetylcholinesterase. Immunity. 2009 Dec;31(6):965–73.
CAS
PubMed
Google Scholar
Korotkov A, Broekaart DWM, Banchaewa L, Pustjens B, Scheppingen J, Anink JJ, et al. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia. 2020 Jan;68(1):60–75.
PubMed
Google Scholar
Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ. Differential Regulation of Interleukin-1 Receptor-associated Kinase-1 (IRAK-1) and IRAK-2 by MicroRNA-146a and NF-κB in Stressed Human Astroglial Cells and in Alzheimer Disease. J Biol Chem. 2010 Dec;285(50):38951–60.
CAS
PubMed
PubMed Central
Google Scholar
Fan W, Liang C, Ou M, Zou T, Sun F, Zhou H, et al. MicroRNA-146a Is a Wide-Reaching Neuroinflammatory Regulator and Potential Treatment Target in Neurological Diseases. Front Mol Neurosci [Internet]. 2020 Jun 5 [cited 2020 Dec 2];13. Available from: https://www.frontiersin.org/article/10.3389/fnmol.2020.00090/full
Saba R, Sorensen DL, Booth SA. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front Immunol [Internet]. 2014 Nov 21 [cited 2020 Dec 2];5. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2014.00578/abstract
Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF- B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci. 2006 Aug 15;103(33):12481–6.
CAS
PubMed
PubMed Central
Google Scholar
Martin NA, Hyrlov KH, Elkjaer ML, Thygesen EK, Wlodarczyk A, Elbaek KJ, et al. Absence of miRNA-146a Differentially Alters Microglia Function and Proteome. Front Immunol [Internet]. 2020 Jun 5 [cited 2020 Dec 2];11. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2020.01110/full
Nguyen LS, Fregeac J, Bole-Feysot C, Cagnard N, Iyer A, Anink J, et al. Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders. Mol Autism [Internet]. 2018 Dec [cited 2020 Dec 2];9(1). Available from: https://molecularautism.biomedcentral.com/articles/10.1186/s13229-018-0219-3
Fregeac J, Moriceau S, Poli A, Nguyen LS, Oury F, Colleaux L. Loss of the neurodevelopmental disease-associated gene miR-146a impairs neural progenitor differentiation and causes learning and memory deficits. Mol Autism [Internet]. 2020 Dec [cited 2020 Dec 2];11(1). Available from: https://molecularautism.biomedcentral.com/articles/10.1186/s13229-020-00328-3
Prada I, Gabrielli M, Turola E, Iorio A, D’Arrigo G, Parolisi R, et al. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol (Berl). 2018 Apr;135(4):529–50.
CAS
Google Scholar
Foinquinos A, Batkai S, Genschel C, Viereck J, Rump S, Gyöngyösi M, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun [Internet]. 2020 Dec [cited 2020 Aug 4];11(1). Available from: http://www.nature.com/articles/s41467-020-14349-2
Lee EC, Valencia T, Allerson C, Schairer A, Flaten A, Yheskel M, et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun [Internet]. 2019 Dec [cited 2020 Aug 4];10(1). Available from: http://www.nature.com/articles/s41467-019-11918-y
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA Changes in Alzheimer’s Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways. J Alzheimers Dis. 2008 May 9;14(1):27–41.
CAS
PubMed
Google Scholar
Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, Lopez-Lopez E, Garcia-Orad Á. A Systematic Review of MicroRNA Expression as Biomarker of Late-Onset Alzheimer’s Disease. Mol Neurobiol. 2019 Dec;56(12):8376–91.
CAS
PubMed
Google Scholar
Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, et al. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med. 2013;5(10):1613–34.
CAS
PubMed
PubMed Central
Google Scholar
Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007 Feb 12;18(3):297–300.
CAS
PubMed
Google Scholar
Pichler S, Gu W, Hartl D, Gasparoni G, Leidinger P, Keller A, et al. The miRNome of Alzheimer’s disease: consistent downregulation of the miR-132/212 cluster. Neurobiol Aging. 2017 Feb;50:167.e1-167.e10.
Li QS, Cai D. Integrated miRNA-Seq and mRNA-Seq Study to Identify miRNAs Associated With Alzheimer’s Disease Using Post-mortem Brain Tissue Samples. Front Neurosci. 2021;15:620899.
PubMed
PubMed Central
Google Scholar
Konovalova, Gerasymchuk, Parkkinen, Chmielarz, Domanskyi. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci. 2019 Nov 30;20(23):6055.
CAS
PubMed Central
Google Scholar
Zhang R, Zhang Q, Niu J, Lu K, Xie B, Cui D, et al. Screening of microRNAs associated with Alzheimer’s disease using oxidative stress cell model and different strains of senescence accelerated mice. J Neurol Sci. 2014 Mar;338(1–2):57–64.
CAS
PubMed
Google Scholar
Engedal N, Žerovnik E, Rudov A, Galli F, Olivieri F, Procopio AD, et al. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. Oxid Med Cell Longev. 2018;2018:1–16.
Google Scholar
Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006 Jan;439(7074):283–9.
CAS
PubMed
Google Scholar
Cardoso AL, Guedes JR. Pereira de Almeida L, Pedroso de Lima MC. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production: miR-155 role during microglia activation. Immunology. 2012 Jan;135(1):73–88.
CAS
PubMed
PubMed Central
Google Scholar
Lee K, Kim H, An K, Kwon O-B, Park S, Cha JH, et al. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer’s Disease. Sci Rep. 2016 06;6:34433.
Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc B Biol Sci. 2014 Sep 26;369(1652):20130515.
Google Scholar
Ghanbari M, Ikram MA, de Looper HWJ, Hofman A, Erkeland SJ, Franco OH, et al. Genome-wide identification of microRNA-related variants associated with risk of Alzheimer’s disease. Sci Rep [Internet]. 2016 Sep [cited 2021 Jan 19];6(1). Available from: http://www.nature.com/articles/srep28387
Herrera-Espejo S, Santos-Zorrozua B, Alvarez-Gonzalez P, Martin-Guerrero I. M. de Pancorbo M, Garcia-Orad A, et al. A Genome-Wide Study of Single-Nucleotide Polymorphisms in MicroRNAs and Further In Silico Analysis Reveals Their Putative Role in Susceptibility to Late-Onset Alzheimer’s Disease. Mol Neurobiol. 2021 Jan;58(1):55–64.
PubMed
Google Scholar
Imperatore JA, Then ML, McDougal KB, Mihailescu MR. Characterization of a G-Quadruplex Structure in Pre-miRNA-1229 and in Its Alzheimer’s Disease-Associated Variant rs2291418: Implications for miRNA-1229 Maturation. Int J Mol Sci. 2020 Jan 24;21(3):767.
CAS
PubMed Central
Google Scholar
Patrick E, Rajagopal S, Wong H-KA, McCabe C, Xu J, Tang A, et al. Dissecting the role of non-coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer’s disease. Mol Neurodegener. 2017 01;12(1):51.
Tasaki S, Gaiteri C, Mostafavi S, De Jager PL, Bennett DA. The Molecular and Neuropathological Consequences of Genetic Risk for Alzheimer’s Dementia. Front Neurosci. 2018;12:699.
PubMed
PubMed Central
Google Scholar
Delay C, Calon F, Mathews P, Hébert SS. Alzheimer-specific variants in the 3’UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 2011 Oct 7;6:70.
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, et al. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol Aging. 2012 Mar;33(3):522–34.
CAS
PubMed
Google Scholar
Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, et al. MicroRNAs can regulate human APP levels. Mol Neurodegener. 2008 Aug 6;3:10.
PubMed
PubMed Central
Google Scholar
Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem. 2010 Jun 11;285(24):18344–51.
CAS
PubMed
PubMed Central
Google Scholar
Parsi S, Smith PY, Goupil C, Dorval V, Hébert SS. Preclinical Evaluation of miR-15/107 Family Members as Multifactorial Drug Targets for Alzheimer’s Disease. Mol Ther - Nucleic Acids. 2015;4:e256.
CAS
PubMed
PubMed Central
Google Scholar
Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 2011 Jan 28;404(4):889–95.
CAS
PubMed
Google Scholar
Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, et al. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis. 2009 Mar;33(3):422–8.
PubMed
Google Scholar
Liang C, Zhu H, Xu Y, Huang L, Ma C, Deng W, et al. MicroRNA-153 negatively regulates the expression of amyloid precursor protein and amyloid precursor-like protein 2. Brain Res. 2012 May;1455:103–13.
CAS
PubMed
Google Scholar
Long JM, Ray B, Lahiri DK. MicroRNA-153 Physiologically Inhibits Expression of Amyloid-β Precursor Protein in Cultured Human Fetal Brain Cells and Is Dysregulated in a Subset of Alzheimer Disease Patients. J Biol Chem. 2012 Sep;287(37):31298–310.
CAS
PubMed
PubMed Central
Google Scholar
Barros-Viegas AT, Carmona V, Ferreiro E, Guedes J, Cardoso AM, Cunha P, et al. miRNA-31 Improves Cognition and Abolishes Amyloid-β Pathology by Targeting APP and BACE1 in an Animal Model of Alzheimer’s Disease. Mol Ther - Nucleic Acids. 2020 Mar;19:1219–36.
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Jiang X-M, Zhao L-J, Sun L-L, Yan M-L, Tian Y, et al. MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion. Cell Death Dis. 2017 Jun;8(6):e2850.
CAS
PubMed
PubMed Central
Google Scholar
Ai J, Sun L-H, Che H, Zhang R, Zhang T-Z, Wu W-C, et al. MicroRNA-195 Protects Against Dementia Induced by Chronic Brain Hypoperfusion via Its Anti-Amyloidogenic Effect in Rats. J Neurosci. 2013 Feb 27;33(9):3989–4001.
CAS
PubMed
PubMed Central
Google Scholar
Su D, Chai Y, Yang J, Wang X, Liu Y, Ma J, et al. Lentivirus-Carried microRNA-195 Rescues Memory Deficits of Alzheimer’s Disease Transgenic Mouse by Attenuating the Generation of Amyloid Plaques. Front Pharmacol [Internet]. 2021 Apr 26 [cited 2021 Sep 13];12. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2021.633805/full
An F, Gong G, Wang Y, Bian M, Yu L, Wei C. MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget. 2017 Dec 26;8(69):114065–71.
PubMed
PubMed Central
Google Scholar
Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6415–20.
PubMed
PubMed Central
Google Scholar
Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, et al. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep. 2015 Aug;12(2):3081–8.
CAS
PubMed
Google Scholar
Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y, et al. miR-29c regulates BACE1 protein expression. Brain Res. 2011 Jun 13;1395:108–15.
CAS
PubMed
Google Scholar
Zhu H-C, Wang L-M, Wang M, Song B, Tan S, Teng J-F, et al. MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull. 2012 Sep;88(6):596–601.
CAS
PubMed
Google Scholar
Zhang X, Huang X, Fang C, Li Q, Cui J, Sun J, et al. miR-124 Regulates the Expression of BACE1 in the Hippocampus Under Chronic Cerebral Hypoperfusion. Mol Neurobiol. 2017 May;54(4):2498–506.
CAS
PubMed
Google Scholar
Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, et al. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry [Internet]. 2020 Jan 15 [cited 2021 Aug 11]; Available from: http://www.nature.com/articles/s41380-019-0610-2
Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and MicroRNA-328 Regulate Expression of Mouse β-Amyloid Precursor Protein-converting Enzyme 1. J Biol Chem. 2009 Jan;284(4):1971–81.
CAS
PubMed
Google Scholar
Oliverio M, Schmidt E, Mauer J, Baitzel C, Hansmeier N, Khani S, et al. Dicer1–miR-328–Bace1 signalling controls brown adipose tissue differentiation and function. Nat Cell Biol. 2016 Mar;18(3):328–36.
CAS
PubMed
Google Scholar
Kim J, Yoon H, Chung D, Brown JL, Belmonte KC, Kim J. miR-186 is decreased in aged brain and suppresses BACE1 expression. J Neurochem. 2016 May;137(3):436–45.
CAS
PubMed
PubMed Central
Google Scholar
Zhang N, Li W-W, Lv C-M, Gao Y-W, Liu X-L, Zhao L. miR-16-5p and miR-19b-3p prevent amyloid β-induced injury by targeting BACE1 in SH-SY5Y cells. NeuroReport. 2020 Feb 5;31(3):205–12.
CAS
PubMed
Google Scholar
Zhong Z, Yuan K, Tong X, Hu J, Song Z, Zhang G, et al. MiR-16 attenuates β-amyloid-induced neurotoxicity through targeting β-site amyloid precursor protein-cleaving enzyme 1 in an Alzheimer’s disease cell model. NeuroReport. 2018 Nov 7;29(16):1365–72.
CAS
PubMed
Google Scholar
Kim J, Yoon H, Horie T, Burchett JM, Restivo JL, Rotllan N, et al. microRNA-33 Regulates ApoE Lipidation and Amyloid- Metabolism in the Brain. J Neurosci. 2015 Nov 4;35(44):14717–26.
CAS
PubMed
PubMed Central
Google Scholar
Hsu H-W, Rodriguez-Ortiz CJ, Zumkehr J, Kitazawa M. Inflammatory Cytokine IL-1β Downregulates Endothelial LRP1 via MicroRNA-mediated Gene Silencing. Neuroscience. 2021 Jan;453:69–80.
CAS
PubMed
Google Scholar
Wang Z, Qin W, Wei CB, Tang Y, Zhao LN, Jin HM, et al. The microRNA-1908 up-regulation in the peripheral blood cells impairs amyloid clearance by targeting ApoE. Int J Geriatr Psychiatry. 2018 Jul;33(7):980–6.
CAS
PubMed
Google Scholar
Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci Off J Soc Neurosci. 2013 Sep 11;33(37):14645–59.
CAS
Google Scholar
Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS. Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem. 2013 Dec;127(6):739–49.
CAS
PubMed
Google Scholar
Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J. 2014 Aug 1;33(15):1667–80.
CAS
PubMed
PubMed Central
Google Scholar
Smith PY, Delay C, Girard J, Papon M-A, Planel E, Sergeant N, et al. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet. 2011 Oct 15;20(20):4016–24.
CAS
PubMed
Google Scholar
Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M, et al. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep [Internet]. 2016 Nov [cited 2021 Jun 4];6(1). Available from: http://www.nature.com/articles/srep30953
Qian Q, Zhang J, He F-P, Bao W-X, Zheng T-T, Zhou D-M, et al. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer’s disease. FASEB J Off Publ Fed Am Soc Exp Biol. 2019;33(3):4404–17.
CAS
Google Scholar
Mai H, Fan W, Wang Y, Cai Y, Li X, Chen F, et al. Intranasal Administration of miR-146a Agomir Rescued the Pathological Process and Cognitive Impairment in an AD Mouse Model. Mol Ther - Nucleic Acids. 2019 Dec;18:681–95.
CAS
PubMed
PubMed Central
Google Scholar
Martinez B, Peplow P. MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: advances and limitations. Neural Regen Res. 2019;14(2):242.
PubMed
PubMed Central
Google Scholar
Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 2019 Jun;30(2):114–27.
CAS
PubMed
PubMed Central
Google Scholar
Banizs AB, Silverman JF. The utility of combined mutation analysis and microRNA classification in reclassifying cancer risk of cytologically indeterminate thyroid nodules. Diagn Cytopathol. 2019 Apr;47(4):268–74.
PubMed
Google Scholar
Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B, et al. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules With Indeterminate Cytology. J Clin Endocrinol Metab. 2015 Jul;100(7):2743–50.
CAS
PubMed
PubMed Central
Google Scholar
Cohen AD, Landau SM, Snitz BE, Klunk WE, Blennow K, Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Mol Cell Neurosci. 2019;97:3–17.
CAS
PubMed
Google Scholar
Jack CR, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013 Dec 18;80(6):1347–58.
CAS
PubMed
PubMed Central
Google Scholar
Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, et al. Biomarkers for tau pathology. Mol Cell Neurosci. 2019;97:18–33.
PubMed
PubMed Central
Google Scholar
Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) investigators, Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020 Mar;26(3):387–397.
Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, Serrano GE, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020 Mar;26(3):379–86.
CAS
PubMed
Google Scholar
Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020 May;19(5):422–33.
CAS
PubMed
Google Scholar
Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018 Feb;554(7691):249–54.
CAS
PubMed
Google Scholar
Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019 Aug 1;10.1212/WNL.0000000000008081.
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu-Gaya L, et al. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer’s disease. J Intern Med [Internet]. 2021 May 22 [cited 2021 May 25]; Available from: https://onlinelibrary.wiley.com/doi/10.1111/joim.13332
Mattsson N, Andreasson U, Zetterberg H, Blennow K. Alzheimer’s Disease Neuroimaging Initiative. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2017 May 1;74(5):557–66.
PubMed
PubMed Central
Google Scholar
Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H. MicroRNA Profiling of CSF Reveals Potential Biomarkers to Detect Alzheimer`s Disease. PloS One. 2015;10(5):e0126423.
PubMed
PubMed Central
Google Scholar
McKeever PM, Schneider R, Taghdiri F, Weichert A, Multani N, Brown RA, et al. MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer’s Disease. Mol Neurobiol. 2018 Dec;55(12):8826–41.
CAS
PubMed
PubMed Central
Google Scholar
Sala Frigerio C, Lau P, Salta E, Tournoy J, Bossers K, Vandenberghe R, et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology. 2013 Dec 10;81(24):2103–6.
CAS
PubMed
Google Scholar
Satoh J-I, Kino Y, Niida S. MicroRNA-Seq Data Analysis Pipeline to Identify Blood Biomarkers for Alzheimer’s Disease from Public Data. Biomark Insights. 2015;10:21–31.
PubMed
PubMed Central
Google Scholar
Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic Review of miRNA as Biomarkers in Alzheimer’s Disease. Mol Neurobiol. 2019 Sep;56(9):6156–67.
CAS
PubMed
PubMed Central
Google Scholar
Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, et al. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimers Dement J Alzheimers Assoc. 2019;15(11):1468–77.
Google Scholar
Hu Y-B, Li C-B, Song N, Zou Y, Chen S-D, Ren R-J, et al. Diagnostic Value of microRNA for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci [Internet]. 2016 Feb 9 [cited 2021 Sep 9];8. Available from: http://journal.frontiersin.org/Article/10.3389/fnagi.2016.00013/abstract
Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013 Jul 29;14(7):R78.
PubMed
PubMed Central
Google Scholar
Ludwig N, Fehlmann T, Kern F, Gogol M, Maetzler W, Deutscher S, et al. Machine Learning to Detect Alzheimer’s Disease from Circulating Non-coding RNAs. Genomics Proteomics Bioinformatics. 2019 Aug;17(4):430–40.
PubMed
PubMed Central
Google Scholar
Keller A, Backes C, Haas J, Leidinger P, Maetzler W, Deuschle C, et al. Validating Alzheimer’s disease micro RNAs using next-generation sequencing. Alzheimers Dement. 2016 May;12(5):565–76.
PubMed
Google Scholar
Jain G, Stuendl A, Rao P, Berulava T, Pena Centeno T, Kaurani L, et al. A combined miRNA–piRNA signature to detect Alzheimer’s disease. Transl Psychiatry [Internet]. 2019 Dec [cited 2020 Apr 26];9(1). Available from: http://www.nature.com/articles/s41398-019-0579-2
Doecke JD, Pérez-Grijalba V, Fandos N, Fowler C, Villemagne VL, Masters CL, et al. Total Aβ 42 /Aβ 40 ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology. 2020 Apr 14;94(15):e1580–91.
CAS
PubMed
PubMed Central
Google Scholar
Kopkova A, Sana J, Fadrus P, Slaby O. Cerebrospinal fluid microRNAs as diagnostic biomarkers in brain tumors. Clin Chem Lab Med CCLM. 2018 May 24;56(6):869–79.
CAS
PubMed
Google Scholar
Müller M, Kuiperij HB, Claassen JA, Küsters B, Verbeek MM. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging. 2014 Jan;35(1):152–8.
PubMed
Google Scholar
Moon J, Lee S-T, Kong IG, Byun J-I, Sunwoo J-S, Shin J-W, et al. Early diagnosis of Alzheimer’s disease from elevated olfactory mucosal miR-206 level. Sci Rep. 2016 Feb 4;6:20364.
CAS
PubMed
PubMed Central
Google Scholar
Kenny A, Jiménez-Mateos EM, Zea-Sevilla MA, Rábano A, Gili-Manzanaro P, Prehn JHM, et al. Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer’s disease. Sci Rep [Internet]. 2019 Dec [cited 2020 Dec 2];9(1). Available from: http://www.nature.com/articles/s41598-019-51837-y
Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther [Internet]. 2021 Dec [cited 2021 Jun 8];13(1). Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00838-z
Fillit H, Green A. Aducanumab and the FDA — where are we now? Nat Rev Neurol. 2021 Mar;17(3):129–30.
PubMed
Google Scholar
Lam JKW, Chow MYT. Zhang Y. Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids. 2015 Sep 15;4:e252.
CAS
Google Scholar
Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci. 2012 Jun 26;109(26):E1695–704.
CAS
PubMed
PubMed Central
Google Scholar
Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, et al. Anti–microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2015 Jan 2;125(1):141–56.
PubMed
Google Scholar
Guo J, Song W, Boulanger J, Xu EY, Wang F, Zhang Y, et al. Dysregulated Expression of microRNA-21 and Disease-Related Genes in Human Patients and in a Mouse Model of Alport Syndrome. Hum Gene Ther. 2019 Jul;30(7):865–81.
CAS
PubMed
Google Scholar
Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, et al. Mir-34: A New Weapon Against Cancer? Mol Ther - Nucleic Acids. 2014 Jan;3:e195.
PubMed Central
Google Scholar
Witten L, Slack FJ. miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis. 2020 Mar 13;41(1):2–7.
CAS
PubMed
Google Scholar
Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res [Internet]. 2019 Dec [cited 2020 Aug 5];38(1). Available from: https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1059-5
Zhang Y, Roccaro AM, Rombaoa C, Flores L, Obad S, Fernandes SM, et al. LNA-mediated anti–miR-155 silencing in low-grade B-cell lymphomas. Blood. 2012 Aug 23;120(8):1678–86.
CAS
PubMed
Google Scholar
Di Martino MT, Leone E, Amodio N, Foresta U, Lionetti M, Pitari MR, et al. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res Off J Am Assoc Cancer Res. 2012 Nov 15;18(22):6260–70.
Google Scholar
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005 Feb;433(7027):769–73.
CAS
PubMed
Google Scholar
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008 Sep;455(7209):58–63.
CAS
PubMed
Google Scholar
Liufu Z, Zhao Y, Guo L, Miao G, Xiao J, Lyu Y, et al. Redundant and incoherent regulations of multiple phenotypes suggest microRNAs’ role in stability control. Genome Res. 2017 Oct;27(10):1665–73.
CAS
PubMed
PubMed Central
Google Scholar
Bartel DP. Metazoan MicroRNAs. Cell. 2018 Mar;173(1):20–51.
CAS
PubMed
PubMed Central
Google Scholar
Jens M, Rajewsky N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet. 2015 Feb;16(2):113–26.
CAS
PubMed
Google Scholar
Alexander MS, Casar JC, Motohashi N, Vieira NM, Eisenberg I, Marshall JL, et al. MicroRNA-486–dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy–associated symptoms. J Clin Invest. 2014 Jun 2;124(6):2651–67.
CAS
PubMed
PubMed Central
Google Scholar
Mestdagh P, Boström A-K, Impens F, Fredlund E, Van Peer G, De Antonellis P, et al. The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-β Pathway in Neuroblastoma. Mol Cell. 2010 Dec;40(5):762–73.
CAS
PubMed
PubMed Central
Google Scholar
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011 Jan;469(7330):336–42.
CAS
PubMed
PubMed Central
Google Scholar
Le MTN, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, et al. Conserved Regulation of p53 Network Dosage by MicroRNA–125b Occurs through Evolving miRNA–Target Gene Pairs. McManus MT, editor. PLoS Genet. 2011 Sep 15;7(9):e1002242.
Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells. Cell. 2009 May;137(4):647–58.
CAS
PubMed
Google Scholar
Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of Mammalian MicroRNA Targets. Cell. 2003 Dec;115(7):787–98.
CAS
PubMed
Google Scholar
Pinzón N, Li B, Martinez L, Sergeeva A, Presumey J, Apparailly F, et al. microRNA target prediction programs predict many false positives. Genome Res. 2017 Feb;27(2):234–45.
PubMed
PubMed Central
Google Scholar
Mockly S, Seitz H. Inconsistencies and Limitations of Current MicroRNA Target Identification Methods. In: Laganà A, editor. MicroRNA Target Identification [Internet]. New York, NY: Springer New York; 2019 [cited 2020 Apr 17]. p. 291–314. Available from: http://link.springer.com/10.1007/978-1-4939-9207-2_16
Bassett AR, Azzam G, Wheatley L, Tibbit C, Rajakumar T, McGowan S, et al. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nat Commun. 2014 Aug 19;5:4640.
CAS
PubMed
Google Scholar
Ecsedi M, Rausch M, Großhans H. The let-7 microRNA directs vulval development through a single target. Dev Cell. 2015 Feb 9;32(3):335–44.
CAS
PubMed
Google Scholar
Eacker SM, Dawson TM, Dawson VL. Understanding microRNAs in neurodegeneration. Nat Rev Neurosci. 2009 Dec;10(12):837–41.
CAS
PubMed
PubMed Central
Google Scholar
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017 Mar;16(3):203–22.
CAS
PubMed
Google Scholar
Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021 Jan 7;42(2):178–88.
PubMed
Google Scholar
Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T, et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J. 2021 Jan 7;42(2):192–201.
CAS
PubMed
Google Scholar
Kasinski AL, Kelnar K, Stahlhut C, Orellana E, Zhao J, Shimer E, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene. 2015 Jul;34(27):3547–55.
CAS
PubMed
Google Scholar
Rupaimoole R, Yoon B, Zhang WC, Adams BD, Slack FJ. A High-Throughput Small Molecule Screen Identifies Ouabain as Synergistic with miR-34a in Killing Lung Cancer Cells. iScience. 2020 Feb;23(2):100878.
CAS
PubMed
PubMed Central
Google Scholar
Meng Z, Lu M. RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant? Front Immunol [Internet]. 2017 Mar 23 [cited 2020 Aug 3];8. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2017.00331/full
Segal M, Slack FJ. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discov. 2020 May;18:1–5.
Google Scholar
Hong DS, Kang Y-K, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020 May;122(11):1630–7.
CAS
PubMed
PubMed Central
Google Scholar
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov. 2018 Sep;17(9):641–59.
CAS
PubMed
Google Scholar
Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown RH, et al. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Sci Transl Med. 2018 Oct 31;10(465):eaau6414.
PubMed
Google Scholar
Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017 Nov 2;377(18):1713–22.
CAS
PubMed
Google Scholar
Pardridge WM. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Front Aging Neurosci [Internet]. 2020 Jan 10 [cited 2021 May 26];11. Available from: https://www.frontiersin.org/article/10.3389/fnagi.2019.00373/full
Mueller C, Berry JD, McKenna-Yasek DM, Gernoux G, Owegi MA, Pothier LM, et al. SOD1 Suppression with Adeno-Associated Virus and MicroRNA in Familial ALS. N Engl J Med. 2020 Jul 9;383(2):151–8.
CAS
PubMed
Google Scholar
Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther. 2018 Mar;29(3):285–98.
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Zhong L, Li M, Li J, Tran K, Ren L, et al. Adeno-Associated Virus Neutralizing Antibodies in Large Animals and Their Impact on Brain Intraparenchymal Gene Transfer. Mol Ther - Methods Clin Dev. 2018 Dec;11:65–72.
CAS
PubMed
PubMed Central
Google Scholar
Chandler RJ, LaFave MC, Varshney GK, Trivedi NS, Carrillo-Carrasco N, Senac JS, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest. 2015 Feb 2;125(2):870–80.
PubMed
PubMed Central
Google Scholar
Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, et al. MicroRNA delivery through nanoparticles. J Control Release Off J Control Release Soc. 2019 Nov 10;313:80–95.
CAS
Google Scholar
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Controlled Release. 2018 Jan;270:290–303.
CAS
Google Scholar
Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Acc Chem Res. 2019 Sep 17;52(9):2435–44.
CAS
PubMed
Google Scholar
Samaridou E, Walgrave H, Salta E, Álvarez DM, Castro-López V, Loza M, et al. Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials. 2020 Feb;230:119657.
CAS
PubMed
Google Scholar
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol. 2017 Dec;34:33–51.
CAS
PubMed
Google Scholar
Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet Lond Engl. 2016 17;388(10063):3017–3026.
Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med. 2018 15;378(7):625–635.
Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011 Mar 2;3(72):72ra18.
PubMed
PubMed Central
Google Scholar
Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease. N Engl J Med. 2019 Jun 13;380(24):2307–16.
CAS
PubMed
Google Scholar
Maimon R, Chillon-Marinas C, Snethlage CE, Singhal SM, McAlonis-Downes M, Ling K, et al. Therapeutically viable generation of neurons with antisense oligonucleotide suppression of PTB. Nat Neurosci [Internet]. 2021 Jun 3 [cited 2021 Jun 8]; Available from: http://www.nature.com/articles/s41593-021-00864-y
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody–Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem. 2019 Oct 16;30(10):2483–501.
CAS
PubMed
Google Scholar
Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. J Clin Med. 2021 Feb 18;10(4):838.
CAS
PubMed
PubMed Central
Google Scholar
Xia C-F, Zhang Y, Zhang Y, Boado RJ, Pardridge WM. Intravenous siRNA of Brain Cancer with Receptor Targeting and Avidin–Biotin Technology. Pharm Res. 2007 Nov 5;24(12):2309–16.
CAS
PubMed
Google Scholar
Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci. 2016 Sep 27;113(39):10962–7.
CAS
PubMed
PubMed Central
Google Scholar
Du L, Kayali R, Bertoni C, Fike F, Hu H, Iversen PL, et al. Arginine-rich cell-penetrating peptide dramatically enhances AMO-mediated ATM aberrant splicing correction and enables delivery to brain and cerebellum. Hum Mol Genet. 2011 Aug 15;20(16):3151–60.
CAS
PubMed
PubMed Central
Google Scholar
Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017 Mar;35(3):222–9.
CAS
PubMed
Google Scholar
Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014 Dec;24(6):374–87.
CAS
PubMed
Google Scholar
Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008 Apr;452(7189):896–9.
PubMed
Google Scholar
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018 04;15(3):338–352.
Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011 Apr;43(4):371–8.
CAS
PubMed
PubMed Central
Google Scholar
Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010 Jan 8;327(5962):198–201.
CAS
PubMed
Google Scholar
Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019 Feb;9(1):5–23.
PubMed
Google Scholar
Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and Efficacy of RNAi Therapy for Transthyretin Amyloidosis. N Engl J Med. 2013 Aug 29;369(9):819–29.
CAS
PubMed
Google Scholar
Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang C-C, Ueda M, Kristen AV, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018 Jul 5;379(1):11–21.
CAS
PubMed
Google Scholar
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med [Internet]. 2020 Dec 30 [cited 2021 Jan 20]; Available from: http://www.nejm.org/doi/10.1056/NEJMoa2035389
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–15.
CAS
PubMed
Google Scholar
Abplanalp WT, Fischer A, John D, Zeiher AM, Gosgnach W, Darville H, et al. Efficiency and Target Derepression of Anti-miR-92a: Results of a First in Human Study. Nucleic Acid Ther [Internet]. 2020 Jul 20 [cited 2020 Dec 2]; Available from: https://www.liebertpub.com/doi/10.1089/nat.2020.0871
Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 2016 Aug;8(8):1079–85.
CAS
PubMed
Google Scholar
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017 Oct;18(10):1386–96.
PubMed
Google Scholar
Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013 May 2;368(18):1685–94.
CAS
PubMed
Google Scholar
van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther. 2016 Jan;43(1):102–13.
PubMed
Google Scholar
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020 Oct;19(10):673–94.
CAS
PubMed
Google Scholar
van der Ree MH, de Vree JM, Stelma F, Willemse S, van der Valk M, Rietdijk S, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. The Lancet. 2017 Feb;389(10070):709–17.
Google Scholar
Wang D, Liu K, Cattatossi G, Nelson M, Wright TM. Preclinical development of miR-10b antagomist for the treatment of glioblastoma. In New Orleans; 2018. Available from: http://regulusrx.com/wp-content/uploads/2018/12/SNO2018-miR10b-GBM.pdf
Google Scholar
Dasgupta I, Chatterjee A. Recent Advances in miRNA Delivery Systems. Methods Protoc. 2021 Jan 20;4(1):10.
CAS
PubMed
PubMed Central
Google Scholar
Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017 Jan;16(1):19–34.
CAS
PubMed
Google Scholar
de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics. 2016 Dec;8(1):105.
PubMed
PubMed Central
Google Scholar
Zhang S, Cheng Z, Wang Y, Han T. The Risks of miRNA Therapeutics: In a Drug Target Perspective. Drug Des Devel Ther. 2021 Feb;15:721–33.
PubMed
PubMed Central
Google Scholar
Jicha GA, Kryscio RJ, Beech BF, Wang W-X, Lynn BC, Schmitt FA, et al. O3-10-05: MODULATION OF MICRORNA PATHWAYS BY GEMFIBROZIL IN PREDEMENTIA ALZHEIMER DISEASE: A RANDOMIZED, PLACEBO-CONTROLLED. DOUBLE-BLIND CLINICAL TRIAL. Alzheimers Dement. 2019 Jul;15:P910.
Google Scholar
Cummings J, Feldman HH, Scheltens P. The “rights” of precision drug development for Alzheimer’s disease. Alzheimers Res Ther. 2019 Dec;11(1):76.
PubMed
PubMed Central
Google Scholar
Beierlein JM, McNamee LM, Ledley FD. As Technologies for Nucleotide Therapeutics Mature, Products Emerge. Mol Ther - Nucleic Acids. 2017 Dec;9:379–86.
CAS
PubMed
PubMed Central
Google Scholar