Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991;12(10):383–8.
Article
PubMed
CAS
Google Scholar
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.
Article
PubMed
CAS
Google Scholar
Selkoe DJ. The molecular pathology of Alzheimer's disease. Neuron. 1991;6(4):487–98.
Article
PubMed
CAS
Google Scholar
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther. 2019;4:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 2016;537(7618):50–6.
Article
PubMed
CAS
Google Scholar
Cuddy LK, Prokopenko D, Cunningham EP, Brimberry R, Song P, Kirchner R, et al. Aβ-accelerated neurodegeneration caused by Alzheimer's-associated. Sci Transl Med. 2020;12(563):eaaz2541.
Article
PubMed
CAS
Google Scholar
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020;6(1):e12050.
Google Scholar
Cuddy LK, Wani WY, Morella ML, Pitcairn C, Tsutsumi K, Fredriksen K, et al. Stress-induced cellular clearance is mediated by the SNARE protein ykt6 and disrupted by α-Synuclein. Neuron. 2019;104(5):869–84.e11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hernandez I, Luna G, Rauch JN, Reis SA, Giroux M, Karch CM, et al. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci Transl Med. 2019;11(485):eaat3005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, et al. Activation of β-Glucocerebrosidase reduces pathological α-Synuclein and restores lysosomal function in Parkinson's patient midbrain neurons. J Neurosci. 2016;36(29):7693–706.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–97.
Article
PubMed
CAS
Google Scholar
Bonam SR, Wang F, Muller S. Lysosomes as a therapeutic target. Nat Rev Drug Discov. 2019;18(12):923–48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener. 2019;14(1):20.
Article
PubMed
PubMed Central
Google Scholar
Sharoar MG, Hu X, Ma XM, Zhu X, Yan R. Sequential formation of different layers of dystrophic neurites in Alzheimer's brains. Mol Psychiatry. 2019;24(9):1369–82.
Article
PubMed
PubMed Central
Google Scholar
Dickson TC, King CE, McCormack GH, Vickers JC. Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer's disease. Exp Neurol. 1999;156(1):100–10.
Article
PubMed
CAS
Google Scholar
Sadleir KR, Kandalepas PC, Buggia-Prevot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Abeta generation in Alzheimer's disease. Acta Neuropathol. 2016;132(2):235–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer's β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126(3):329–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peters F, Salihoglu H, Rodrigues E, Herzog E, Blume T, Filser S, et al. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol. 2018;135(5):695–710.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bauzon J, Lee G, Cummings J. Repurposed agents in the Alzheimer's disease drug development pipeline. Alzheimers Res Ther. 2020;12(1):98.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. Medchemcomm. 2017;8(5):841–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wong NS, Morse MA. Lonafarnib for cancer and progeria. Expert Opin Investig Drugs. 2012;21(7):1043–55.
Article
PubMed
CAS
Google Scholar
Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011;3(14):1787–808.
Article
PubMed
CAS
Google Scholar
McTaggart SJ. Isoprenylated proteins. Cell Mol Life Sci. 2006;63(3):255–67.
Article
PubMed
CAS
Google Scholar
Onono FO, Morgan MA, Spielmann HP, Andres DA, Subramanian T, Ganser A, et al. A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with Western blotting. Mol Cell Proteomics. 2010;9(4):742–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schey GL, Buttery PH, Hildebrandt ER, Novak SX, Schmidt WK, Hougland JL, et al. MALDI-MS analysis of peptide libraries expands the scope of substrates for farnesyltransferase. Int J Mol Sci. 2021;22(21):12042.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun L, Xie S, Peng G, Wang J, Li Y, Qin J, et al. Lonafarnib is a potential inhibitor for neovascularization. PLoS One. 2015;10(4):e0122830.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pan J, Song E, Cheng C, Lee MH, Yeung SC. Farnesyltransferase inhibitors-induced autophagy: alternative mechanisms? Autophagy. 2009;5(1):129–31.
Article
PubMed
CAS
Google Scholar
Liu Z, Meray RK, Grammatopoulos TN, Fredenburg RA, Cookson MR, Liu Y, et al. Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson's disease. Proc Natl Acad Sci U S A. 2009;106(12):4635–40.
Article
PubMed
PubMed Central
Google Scholar
Mehta IS, Bridger JM, Kill IR. Progeria, the nucleolus and farnesyltransferase inhibitors. Biochem Soc Trans. 2010;38(Pt 1):287–91.
Article
PubMed
CAS
Google Scholar
Jeong A, Cheng S, Zhong R, Bennett DA, Bergö MO, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun. 2021;9(1):129.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marcus AI, Zhou J, O'Brate A, Hamel E, Wong J, Nivens M, et al. The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. Cancer Res. 2005;65(9):3883–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi B, Yaremko B, Hajian G, Terracina G, Bishop WR, Liu M, et al. The farnesyl protein transferase inhibitor SCH66336 synergizes with taxanes in vitro and enhances their antitumor activity in vivo. Cancer Chemother Pharmacol. 2000;46(5):387–93.
Article
PubMed
CAS
Google Scholar
Zhou J, Vos CC, Gjyrezi A, Yoshida M, Khuri FR, Tamanoi F, et al. The protein farnesyltransferase regulates HDAC6 activity in a microtubule-dependent manner. J Biol Chem. 2009;284(15):9648–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fernandez-Valenzuela JJ, Sanchez-Varo R, Muñoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, et al. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Sci Rep. 2020;10(1):14776.
Article
PubMed
PubMed Central
CAS
Google Scholar
Varidaki A, Hong Y, Coffey ET. Repositioning microtubule stabilizing drugs for brain disorders. Front Cell Neurosci. 2018;12:226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O. Gene dosage dependent aggravation of the neurological phenotype in the 5XFAD mouse model of Alzheimer's disease. J Alzheimers Dis. 2015;45(4):1223–36.
Article
PubMed
CAS
Google Scholar
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26(40):10129–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giannoni P, Arango-Lievano M, Neves ID, Rousset MC, Baranger K, Rivera S, et al. Cerebrovascular pathology during the progression of experimental Alzheimer's disease. Neurobiol Dis. 2016;88:107–17.
Article
PubMed
CAS
Google Scholar
Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging. 2012;33(1):196.e29–40.
Article
CAS
Google Scholar
Moechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem. 1999;274(10):6483–92.
Article
PubMed
CAS
Google Scholar
Moulder SL, Mahany JJ, Lush R, Rocha-Lima C, Langevin M, Ferrante KJ, et al. A phase I open label study of the farnesyltransferase inhibitor CP-609,754 in patients with advanced malignant tumors. Clin Cancer Res. 2004;10(21):7127–35.
Article
PubMed
CAS
Google Scholar
Eskens FA, Awada A, Cutler DL, de Jonge MJ, Luyten GP, Faber MN, et al. Phase I and pharmacokinetic study of the oral farnesyl transferase inhibitor SCH 66336 given twice daily to patients with advanced solid tumors. J Clin Oncol. 2001;19(4):1167–75.
Article
PubMed
CAS
Google Scholar
Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques. Proc Natl Acad Sci U S A. 2015;112(28):E3699–708.
Article
PubMed
PubMed Central
CAS
Google Scholar
Desjardins A, Reardon DA, Peters KB, Threatt S, Coan AD, Herndon JE, et al. A phase I trial of the farnesyl transferase inhibitor, SCH 66336, with temozolomide for patients with malignant glioma. J Neuro-Oncol. 2011;105(3):601–6.
Article
CAS
Google Scholar
Sadleir KR, Eimer WA, Cole SL, Vassar R. Aβ reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level. Mol Neurodegener. 2015;10:1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bundy JL, Vied C, Badger C, Nowakowski RS. Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: a multi-omic analysis. J Comp Neurol. 2019;527(2):462–75.
Article
PubMed
CAS
Google Scholar
Shukla V, Zheng YL, Mishra SK, Amin ND, Steiner J, Grant P, et al. A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer's disease phenotypes in model mice. FASEB J. 2013;27(1):174–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanno T, Tsuchiya A, Nishizaki T. Hyperphosphorylation of tau at Ser396 occurs in the much earlier stage than appearance of learning and memory disorders in 5XFAD mice. Behav Brain Res. 2014;274:302–6.
Article
PubMed
CAS
Google Scholar
Bertrand J, Plouffe V, Sénéchal P, Leclerc N. The pattern of human tau phosphorylation is the result of priming and feedback events in primary hippocampal neurons. Neuroscience. 2010;168(2):323–34.
Article
PubMed
CAS
Google Scholar
Adjei AA, Davis JN, Erlichman C, Svingen PA, Kaufmann SH. Comparison of potential markers of farnesyltransferase inhibition. Clin Cancer Res. 2000;6(6):2318–25.
PubMed
CAS
Google Scholar
Liu M, Bryant MS, Chen J, Lee S, Yaremko B, Lipari P, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. 1998;58(21):4947–56.
PubMed
CAS
Google Scholar
Ferguson SM. Axonal transport and maturation of lysosomes. Curr Opin Neurobiol. 2018;51:45–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lie PPY, Yang DS, Stavrides P, Goulbourne CN, Zheng P, Mohan PS, et al. Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Rep. 2021;35(4):109034.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nixon RA, Yang DS, Lee JH. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy. 2008;4(5):590–9.
Article
PubMed
CAS
Google Scholar
Yust-Katz S, Liu D, Yuan Y, Liu V, Kang S, Groves M, et al. Phase 1/1b study of lonafarnib and temozolomide in patients with recurrent or temozolomide refractory glioblastoma. Cancer. 2013;119(15):2747–53.
Article
PubMed
CAS
Google Scholar
Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.
Article
PubMed
CAS
Google Scholar
Kieran MW, Packer RJ, Onar A, Blaney SM, Phillips P, Pollack IF, et al. Phase I and pharmacokinetic study of the oral farnesyltransferase inhibitor lonafarnib administered twice daily to pediatric patients with advanced central nervous system tumors using a modified continuous reassessment method: a pediatric brain tumor consortium study. J Clin Oncol. 2007;25(21):3137–43.
Article
PubMed
CAS
Google Scholar
Venet M, End D, Angibaud P. Farnesyl protein transferase inhibitor ZARNESTRA R115777 - history of a discovery. Curr Top Med Chem. 2003;3(10):1095–102.
Article
PubMed
CAS
Google Scholar
Sharoar MG, Palko S, Ge Y, Saido TC, Yan R. Accumulation of saposin in dystrophic neurites is linked to impaired lysosomal functions in Alzheimer's disease brains. Mol Neurodegener. 2021;16(1):45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Crespo NC, Ohkanda J, Yen TJ, Hamilton AD, Sebti SM. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem. 2001;276(19):16161–7.
Article
PubMed
CAS
Google Scholar
Kim ES, Kies MS, Fossella FV, Glisson BS, Zaknoen S, Statkevich P, et al. Phase II study of the farnesyltransferase inhibitor lonafarnib with paclitaxel in patients with taxane-refractory/resistant nonsmall cell lung carcinoma. Cancer. 2005;104(3):561–9.
Article
PubMed
CAS
Google Scholar
Cheng S, Cao D, Hottman DA, Yuan L, Bergo MO, Li L. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J Biol Chem. 2013;288(50):35952–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qu W, Suazo KF, Liu W, Cheng S, Jeong A, Hottman D, et al. Neuronal protein Farnesylation regulates hippocampal synaptic plasticity and cognitive function. Mol Neurobiol. 2021;58(3):1128–44.
Article
PubMed
CAS
Google Scholar
Mealer RG, Murray AJ, Shahani N, Subramaniam S, Snyder SH. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy. J Biol Chem. 2014;289(6):3547–54.
Article
PubMed
CAS
Google Scholar
Storck EM, Morales-Sanfrutos J, Serwa RA, Panyain N, Lanyon-Hogg T, Tolmachova T, et al. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat Chem. 2019;11(6):552–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol. 2018;53(3):279–310.
Article
PubMed
PubMed Central
Google Scholar
Vassar R. BACE1 inhibition as a therapeutic strategy for Alzheimer's disease. J Sport Health Sci. 2016;5(4):388–90.
Article
PubMed
PubMed Central
Google Scholar
McDade E, Voytyuk I, Aisen P, Bateman RJ, Carrillo MC, De Strooper B, et al. The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol. 2021;17(11):703–14.
Article
PubMed
Google Scholar