Roses AD: Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med. 1996, 47: 387-400. 10.1146/annurev.med.47.1.387.
Article
CAS
PubMed
Google Scholar
Bertram L, Tanzi RE: Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet. 2009, 18: R137-R145. 10.1093/hmg/ddp406.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tomlinson BE, Blessed G, Roth M: Observations on the brains of demented old people. J Neurol Sci. 1970, 11: 205-242. 10.1016/0022-510X(70)90063-8.
Article
CAS
PubMed
Google Scholar
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA. 1985, 82: 4245-4249. 10.1073/pnas.82.12.4245.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hardy J: The relationship between amyloid and tau. J Mol Neurosci. 2003, 20: 203-206. 10.1385/JMN:20:2:203.
Article
CAS
PubMed
Google Scholar
Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, et al: Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature. 1992, 359: 325-327. 10.1038/359325a0.
Article
CAS
PubMed
Google Scholar
Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y: Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994, 13: 45-53. 10.1016/0896-6273(94)90458-8.
Article
CAS
PubMed
Google Scholar
Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR: Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982, 215: 1237-1239. 10.1126/science.7058341.
Article
CAS
PubMed
Google Scholar
West MJ, Coleman PD, Flood DG, Troncoso JC: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet. 1994, 344: 769-772. 10.1016/S0140-6736(94)92338-8.
Article
CAS
PubMed
Google Scholar
Mesulam M: The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show?. Learn Mem. 2004, 11: 43-49. 10.1101/lm.69204.
Article
PubMed
Google Scholar
Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S, Gilmor ML, Levey AI, Kordower JH: Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol. 2002, 443: 136-153. 10.1002/cne.10122.
Article
CAS
PubMed
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131: 861-872. 10.1016/j.cell.2007.11.019.
Article
CAS
PubMed
Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318: 1917-1920. 10.1126/science.1151526.
Article
CAS
PubMed
Google Scholar
Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N: Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011, 20: 4530-4539. 10.1093/hmg/ddr394.
Article
CAS
PubMed
Google Scholar
Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482: 216-220.
PubMed Central
CAS
PubMed
Google Scholar
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, et al: Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell. 2013, 12: 487-496. 10.1016/j.stem.2013.01.009.
Article
CAS
PubMed
Google Scholar
Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA: The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells. 2011, 29: 802-811. 10.1002/stem.626.
Article
PubMed Central
PubMed
Google Scholar
Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, et al: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009, 5: 111-123. 10.1016/j.stem.2009.06.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tucker ES, Segall S, Gopalakrishna D, Wu Y, Vernon M, Polleux F, Lamantia AS: Molecular specification and patterning of progenitor cells in the lateral and medial ganglionic eminences. J Neurosci. 2008, 28: 9504-9518. 10.1523/JNEUROSCI.2341-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schambra UB, Sulik KK, Petrusz P, Lauder JM: Ontogeny of cholinergic neurons in the mouse forebrain. J Comp Neurol. 1989, 288: 101-122. 10.1002/cne.902880109.
Article
CAS
PubMed
Google Scholar
Katoh Y, Katoh M: Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review). Int J Mol Med. 2006, 18: 1019-1023.
CAS
PubMed
Google Scholar
Zhang Z, Verheyden JM, Hassell JA, Sun X: FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds. Dev Cell. 2009, 16: 607-613. 10.1016/j.devcel.2009.02.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faedo A, Borello U, Rubenstein JL: Repression of Fgf signaling by sprouty1-2 regulates cortical patterning in two distinct regions and times. J Neurosci. 2010, 30: 4015-4023. 10.1523/JNEUROSCI.0307-10.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, Rubenstein JL, Westphal H: The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci USA. 2003, 100: 9005-9010. 10.1073/pnas.1537759100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fragkouli A, Hearn C, Errington M, Cooke S, Grigoriou M, Bliss T, Stylianopoulou F, Pachnis V: Loss of forebrain cholinergic neurons and impairment in spatial learning and memory in LHX7-deficient mice. Eur J Neurosci. 2005, 21: 2923-2938. 10.1111/j.1460-9568.2005.04141.x.
Article
PubMed
Google Scholar
Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST: Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat. 2003, 26: 233-242. 10.1016/S0891-0618(03)00068-1.
Article
CAS
PubMed
Google Scholar
Magno L, Catanzariti V, Nitsch R, Krude H, Naumann T: Ongoing expression of Nkx2.1 in the postnatal mouse forebrain: potential for understanding NKX2.1 haploinsufficiency in humans?. Brain Res. 2009, 1304: 164-186.
Article
CAS
PubMed
Google Scholar
Mattson MP, Chan SL: Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium. 2003, 34: 385-397. 10.1016/S0143-4160(03)00128-3.
Article
CAS
PubMed
Google Scholar
Corona C, Pensalfini A, Frazzini V, Sensi SL: New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc. Cell Death Dis. 2011, 2: e176-10.1038/cddis.2011.57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sattler R, Tymianski M: Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med. 2000, 78: 3-13. 10.1007/s001090000077.
Article
CAS
PubMed
Google Scholar
Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, Zhou GM, Ayala M, Zhang SC: Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol. 2013, 31: 440-447. 10.1038/nbt.2565.
Article
PubMed Central
PubMed
Google Scholar
Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA: Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci. 2004, 7: 1003-1009. 10.1038/nn1301.
Article
CAS
PubMed
Google Scholar
Shi Y, Kirwan P, Livesey FJ: Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012, 7: 1836-1846. 10.1038/nprot.2012.116.
Article
CAS
PubMed
Google Scholar
Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L: Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008, 22: 152-165. 10.1101/gad.1616208.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim J, Basak JM, Holtzman DM: The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009, 63: 287-303. 10.1016/j.neuron.2009.06.026.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ooi L, Sidhu K, Poljak A, Sutherland G, O’Connor MD, Sachdev P, Munch G: Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm. 2013, 120: 103-111. 10.1007/s00702-012-0839-2.
Article
PubMed
Google Scholar
Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D, Roses AD: Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA. 1993, 90: 9649-9653. 10.1073/pnas.90.20.9649.
Article
PubMed Central
CAS
PubMed
Google Scholar
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993, 261: 921-923. 10.1126/science.8346443.
Article
CAS
PubMed
Google Scholar
Tiraboschi P, Hansen LA, Masliah E, Alford M, Thal LJ, Corey-Bloom J: Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology. 2004, 62: 1977-1983. 10.1212/01.WNL.0000128091.92139.0F.
Article
CAS
PubMed
Google Scholar
Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM, Paul SM: Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci. 2009, 29: 6771-6779. 10.1523/JNEUROSCI.0887-09.2009.
Article
CAS
PubMed
Google Scholar
Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2000, 97: 2892-2897. 10.1073/pnas.050004797.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liraz O, Boehm-Cagan A, Michaelson DM: ApoE4 induces Abeta42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol neurodegeneration. 2013, 8: 16-10.1186/1750-1326-8-16.
Article
CAS
Google Scholar
Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J: Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003, 9: 453-457. 10.1038/nm838.
Article
CAS
PubMed
Google Scholar
Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM: Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med. 2004, 10: 719-726. 10.1038/nm1058.
Article
CAS
PubMed
Google Scholar
Metzger RE, LaDu MJ, Pan JB, Getz GS, Frail DE, Falduto MT: Neurons of the human frontal cortex display apolipoprotein E immunoreactivity: implications for Alzheimer’s disease. J Neuropathol Exp Neurol. 1996, 55: 372-380. 10.1097/00005072-199603000-00013.
Article
CAS
PubMed
Google Scholar
Xu PT, Gilbert JR, Qiu HL, Ervin J, Rothrock-Christian TR, Hulette C, Schmechel DE: Specific regional transcription of apolipoprotein E in human brain neurons. Am J Pathol. 1999, 154: 601-611. 10.1016/S0002-9440(10)65305-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wolfe MS, Xia W, Moore CL, Leatherwood DD, Ostaszewski B, Rahmati T, Donkor IO, Selkoe DJ: Peptidomimetic probes and molecular modeling suggest that Alzheimer’s gamma-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry. 1999, 38: 4720-4727. 10.1021/bi982562p.
Article
CAS
PubMed
Google Scholar
Moore CL, Diehl TS, Selkoe DJ, Wolfe MS: Toward the characterization and identification of gamma-secretases using transition-state analogue inhibitors. Ann N Y Acad Sci. 2000, 920: 197-205.
Article
CAS
PubMed
Google Scholar
Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, Ness D, May PC: Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol. 2005, 28: 126-132. 10.1097/01.wnf.0000167360.27670.29.
Article
CAS
PubMed
Google Scholar
Zhang L, Song L, Terracina G, Liu Y, Pramanik B, Parker E: Biochemical characterization of the gamma-secretase activity that produces beta-amyloid peptides. Biochemistry. 2001, 40: 5049-5055. 10.1021/bi0028800.
Article
CAS
PubMed
Google Scholar
Burton CR, Meredith JE, Barten DM, Goldstein ME, Krause CM, Kieras CJ, Sisk L, Iben LG, Polson C, Thompson MW, et al: The amyloid-beta rise and gamma-secretase inhibitor potency depend on the level of substrate expression. J Biol Chem. 2008, 283: 22992-23003. 10.1074/jbc.M804175200.
Article
CAS
PubMed
Google Scholar
Nicoll JA, Roberts GW, Graham DI: Amyloid beta-protein, APOE genotype and head injury. Ann N Y Acad Sci. 1996, 777: 271-275. 10.1111/j.1749-6632.1996.tb34431.x.
Article
CAS
PubMed
Google Scholar
Slooter AJ, Tang MX, van Duijn CM, Stern Y, Ott A, Bell K, Breteler MM, Van Broeckhoven C, Tatemichi TK, Tycko B, et al: Apolipoprotein E epsilon4 and the risk of dementia with stroke. A population-based investigation. JAMA. 1997, 277: 818-821. 10.1001/jama.1997.03540340052032.
Article
CAS
PubMed
Google Scholar
Lipton SA, Rosenberg PA: Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994, 330: 613-622. 10.1056/NEJM199403033300907.
Article
CAS
PubMed
Google Scholar
Sheng H, Laskowitz DT, Bennett E, Schmechel DE, Bart RD, Saunders AM, Pearlstein RD, Roses AD, Warner DS: Apolipoprotein E isoform-specific differences in outcome from focal ischemia in transgenic mice. J Cereb Blood Flow Metab. 1998, 18: 361-366.
Article
CAS
PubMed
Google Scholar
Zhang XM, Mao XJ, Zhang HL, Zheng XY, Pham T, Adem A, Winblad B, Mix E, Zhu J: Overexpression of apolipoprotein E4 increases kainic-acid-induced hippocampal neurodegeneration. Exp Neurol. 2012, 233: 323-332. 10.1016/j.expneurol.2011.10.024.
Article
CAS
PubMed
Google Scholar
Jordan J, Galindo MF, Miller RJ, Reardon CA, Getz GS, LaDu MJ: Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures. J Neurosci. 1998, 18: 195-204.
CAS
PubMed
Google Scholar
Lendon CL, Han BH, Salimi K, Fagan AM, Behrens MI, Muller MC, Holtzman DM: No effect of apolipoprotein E on neuronal cell death due to excitotoxic and apoptotic agents in vitro and neonatal hypoxic ischaemia in vivo. Eur J Neurosci. 2000, 12: 2235-2242. 10.1046/j.1460-9568.2000.00113.x.
Article
CAS
PubMed
Google Scholar
Buttini M, Orth M, Bellosta S, Akeefe H, Pitas RE, Wyss-Coray T, Mucke L, Mahley RW: Expression of human apolipoprotein E3 or E4 in the brains of Apoe−/− mice: isoform-specific effects on neurodegeneration. J Neurosci. 1999, 19: 4867-4880.
CAS
PubMed
Google Scholar
Buttini M, Masliah E, Yu GQ, Palop JJ, Chang S, Bernardo A, Lin C, Wyss-Coray T, Huang Y, Mucke L: Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. Am J Pathol. 2010, 177: 563-569. 10.2353/ajpath.2010.090973.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang XS, Gruenstein E: Rapid elevation of neuronal cytoplasmic calcium by apolipoprotein E peptide. J Cell Physiol. 1997, 173: 73-83. 10.1002/(SICI)1097-4652(199710)173:1<73::AID-JCP9>3.0.CO;2-G.
Article
CAS
PubMed
Google Scholar
Tolar M, Keller JN, Chan S, Mattson MP, Marques MA, Crutcher KA: Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J Neurosci. 1999, 19: 7100-7110.
CAS
PubMed
Google Scholar
Muller W, Meske V, Berlin K, Scharnagl H, Marz W, Ohm TG: Apolipoprotein E isoforms increase intracellular Ca2+ differentially through a omega-agatoxin IVa-sensitive Ca2 + −channel. Brain Pathol. 1998, 8: 641-653.
Article
CAS
PubMed
Google Scholar
Veinbergs I, Everson A, Sagara Y, Masliah E: Neurotoxic effects of apolipoprotein E4 are mediated via dysregulation of calcium homeostasis. J Neurosci Res. 2002, 67: 379-387. 10.1002/jnr.10138.
Article
CAS
PubMed
Google Scholar
Sattler R, Tymianski M: Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol. 2001, 24: 107-129. 10.1385/MN:24:1-3:107.
Article
CAS
PubMed
Google Scholar
Tymianski M, Charlton MP, Carlen PL, Tator CH: Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci. 1993, 13: 2085-2104.
CAS
PubMed
Google Scholar
Sattler R, Charlton MP, Hafner M, Tymianski M: Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem. 1998, 71: 2349-2364.
Article
CAS
PubMed
Google Scholar