Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88:640–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer’s disease. Lancet. 2016;388:505–17.
Article
CAS
PubMed
Google Scholar
Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82:756–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M, Scheff SW, Ginsberg SD. Molecular and cellular pathophysiology of preclinical Alzheimer’s disease. Behav Brain Res. 2016;311:54–69.
Article
CAS
PubMed
Google Scholar
Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A. Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988;23:138–44.
Article
CAS
PubMed
Google Scholar
Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997;277:813–7.
Article
CAS
PubMed
Google Scholar
Bryne C, Matthews FE, Xuereb JH, Broome JC, McKenzie J, Rossi M, Ince PG, McKeith IG, Lowe J, Esiri MM, Morris JH. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357:169–75.
Article
Google Scholar
White L, Small BJ, Petrovitch H, Ross GW, Masaki K, Abbott RD, Hardman J, Davis D, Nelson J, Markesbery W. Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study. J Geriatr Psychiatry Neurol. 2005;18:224–7.
Article
PubMed
Google Scholar
Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings form the Rush Memory and Aging Project. Curr Alzheimer Res. 2012;9:646–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448–60.
Article
PubMed
Google Scholar
Honer WG, Barr AM, Sawada K, Thornton AE, Morris MC, Leurgans SE, et al. Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry. 2012;2:e114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyle PA, Wilson RS, Yu L, Barr AM, Honer WG, Schneider JA, et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol. 2013;74:478–89.
Article
PubMed
Google Scholar
Ankarcrona M, Winblad B. Biomarkers for apoptosis in Alzheimer’s disease. Int J Geriatr Psychiatry. 2005;20:101–5.
Article
PubMed
Google Scholar
de la Monte SM, Sohn YK, Wands JR. Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci. 1997;152:73–83.
Article
PubMed
Google Scholar
Ferrer I, Puig B, Krupinski J, Carmona M, Blanco R. Fas and Fas ligand expression in Alzheimer’s disease. Acta Neuropathol. 2001;102:121–31.
CAS
PubMed
Google Scholar
Erten-Lyons D, Jacobson A, Kramer P, Grupe A, Kaye J. The FAS gene, brain volume, and disease progression in Alzheimer’s disease. Alzheimers Dement. 2010;6:118–24.
Article
CAS
PubMed
Google Scholar
Nishimura T, Akiyama H, Yonehara S, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K. Fas antigen expression in brains of patients with Alzheimer-type dementia. Brain Res. 1995;695:137–45.
Article
CAS
PubMed
Google Scholar
Masliah E, Mallory M, Alford M, Tanaka S, Hansen L. Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J Neuropathol Exp Neurol. 1998;57:1041–52.
Article
CAS
PubMed
Google Scholar
Engidawork E, Gulesserian T, Yoo BC, Cairns N, Lubec G. Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun. 2001;281:84–93.
Article
CAS
PubMed
Google Scholar
Jellinger KA, Stadelmann C. Problems of cell death in neurodegeneration and Alzheimer’s disease. J Alzheimers Dis. 2001;3:31–40.
CAS
PubMed
Google Scholar
Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, Boux H, Castellani RJ, Perry G, Smith MA. Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol. 2001;101:305–10.
CAS
PubMed
Google Scholar
Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM, 1995. FADD, a novel death domain containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995;81:505–12
Alappat E, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang WJ, Peter ME. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell. 2005;19:321–32.
Article
CAS
PubMed
Google Scholar
Park SM, Schickel R, Peter ME. Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol. 2005;17:610–6.
Article
CAS
PubMed
Google Scholar
García-Fuster MJ, García-Sevilla JA. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex. Neuropharmacology. 2015;89:204–14.
Article
PubMed
Google Scholar
García-Fuster MJ, García-Sevilla JA. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology. 2016;233:2955–71.
Article
PubMed
Google Scholar
Keller B, García-Sevilla JA. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:54–62.
Article
CAS
PubMed
Google Scholar
Yeh WC, de la Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS, Lowe SW, Goeddel DV, Mak TW. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science. 1998;279:1954–8.
Article
CAS
PubMed
Google Scholar
Cheng W, Zhang R, Yao C, He L, Jia K, Yang B, Du P, Zhuang H, Chen J, Liu Z, Ding X, Hua Z. A critical role of Fas-associated protein with death domain phosphorylation in intracellular reactive oxygen species homeostasis and aging. Antioxid Redox Signal. 2014;21:33–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu CK, Thal L, Pizzo D, Hansen L, Masliah E, Geula C. Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer’s disease. Exp Neurol. 2005;195:484–96.
Article
CAS
PubMed
Google Scholar
Ivins KJ, Thornton PL, Rohn TT, Cotman CW. Neuronal apoptosis induced by beta-amyloid is mediated by caspase-8. Neurobiol Dis. 1999;6:440–9.
Article
CAS
PubMed
Google Scholar
Bennett DA, Schneider JA, Buchman AS, MendesdeLeon C, Bienias JL, Wilson RS. The Rush and Memory and Aging Project: study design and baseline characteristics of the study cohort. Neuroepidemiology. 2005;25:163–75.
Article
PubMed
Google Scholar
Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A. 1997;94:13287–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
García-Fuster MJ, Ramos-Miguel A, Barr AM, Leurgans SE, Schneider JA, Bennett DA, Honer WG, García-Sevilla JA. Decreased FADD protein is associated with clinical dementia and cognitive decline in a community sample. 55th Annual Meeting of the American College of Neuropsychopharmacology. Poster Session I, M4. 2016.
Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA, Honer WG. Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener. 2015;10:65.
Article
PubMed
PubMed Central
Google Scholar
Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69:2197–204.
Article
PubMed
Google Scholar
Bennett DA, Schneider JA, Tang Y, Arnold SE, Wilson RS. The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol. 2006;5:406–12.
Article
PubMed
Google Scholar
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34:939–44.
Article
CAS
PubMed
Google Scholar
Bennett DA, Schneider JA, Aggarwal NT, Arvanitakis Z, Shah R, Kelly JF, Fox JH, Cochran EJ, Arends D, Treinkman A, Wilson RS. Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology. 2006;27:169–76.
Article
PubMed
Google Scholar
Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Bach J. Natural history of mild cognitive impairment in older persons. Neurology. 2002;59:198–205.
Article
CAS
PubMed
Google Scholar
Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah R, Wilson RS. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–44.
Article
CAS
PubMed
Google Scholar
Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE. Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol. 2004;61:378–84.
Article
PubMed
Google Scholar
Bennett DA, Wilson RS, Schneider JA, Evans DA, Aggarwal NT, Arnold SE, Cochran EJ, Berry-Kravis E, Bienias JL. Apolipoprotein E4 allele, Alzheimer’s disease pathology, and the clinical expression of Alzheimer’s disease. Neurology. 2003;60:246–52.
Article
CAS
PubMed
Google Scholar
Mirra SS, Hart MN, Terry RD. Making the diagnosis of Alzheimer's disease. A primer for practicing pathologists. Arch Pathol Lab Med. 1993;117:132–44.
CAS
PubMed
Google Scholar
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.
Article
CAS
PubMed
Google Scholar
Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–50.
CAS
PubMed
PubMed Central
Google Scholar
Bayer TA, Schäfer S, Simons A, Kemmling A, Kamer T, Tepest R, Eckert A, Schüssel K, Eikenberg O, Sturchler-Pierrat C, Abramowski D, Staufenbiel M, Multhaup G. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A. 2003;100:14187–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mai JK, Assheuer J, Paxinos G. Atlas of the Human Brain. 3rd ed. San Diego, CA: Academic; 1997.
Google Scholar
Morrison JH, Baxter MG. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci. 2012;13:240–50.
CAS
PubMed
PubMed Central
Google Scholar
García-Fuster MJ, Ramos-Miguel A, Rivero G, La Harpe R, Meana JJ, García-Sevilla JA. Regulation of the extrinsic and intrinsic apoptotic pathways in the prefrontal cortex of short- and long-term human opiate abusers. Neuroscience. 2008;157:105–19.
Article
PubMed
Google Scholar
García-Fuster MJ, Díez-Alarcia R, Ferrer-Alcón M, La Harpe R, Meana JJ, García-Sevilla JA. FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: basal contents and effects of psychotropic treatments. Neuroscience. 2014;277:541–51.
Article
PubMed
Google Scholar
Ramos-Miguel A, Sawada K, Jones AA, Thornton AE, Barr AM, Leurgans SE, et al., Presynaptic proteins complexin-I and complexin-II differentially influence cognitive function in early and late stages of Alzheimer’s disease. Acta Neuropathol. 2016 (in press) doi: 10.1007/s00401-016-1647-9.
Honer WG, Hu L, Davies P. Human synaptic proteins with a heterogeneous distribution in cerebellum and visual cortex. Brain Res. 1993;609:9–20.
Article
CAS
PubMed
Google Scholar
Wolozin BL, Pruchnicki A, Dickson DW, Davies P. A neuronal antigen in the brains of Alzheimer patients. Science. 1986;232:648–50.
Article
CAS
PubMed
Google Scholar
Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86:3993–4003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos-Miguel A, Honer WG, Boyda HN, Sawada K, Beasley CL, Procyshyn RM, et al. Exercise prevents downregulation of hippocampal presynaptic proteins following olanzapine-elicited metabolic dysregulation in rats: Distinct roles of inhibitory and excitatory terminals. Neuroscience. 2015;301:298–311.
Article
CAS
PubMed
Google Scholar
García-Fuster MJ, Miralles A, García-Sevilla JA. Effects of opiate drugs on Fas-associated protein with death domain (FADD) and effector caspases in the rat brain: Regulation by the ERK1/2 MAP kinase pathway. Neuropsychopharmacology. 2007;32:399–411.
Article
PubMed
Google Scholar
García-Fuster MJ, Ramos-Miguel A, Miralles A, García-Sevilla JA. Opioid receptor agonists enhance the phosphorylation state of Fas-associated death domain (FADD) protein in the rat brain: Functional interactions with casein kinase Iα, Gαi proteins, and ERK1/2 signaling. Neuropharmacology. 2008;55:886–99.
Article
PubMed
Google Scholar
Ramos-Miguel A, Álvaro-Bartolomé M, García-Fuster MJ, García-Sevilla JA. Role of multifunctional FADD (Fas-associated death domain) adaptor in drug addiction. In Addictions-From Pathophysiology to Treatment (Ed. David Belin). In Tech-Open Access Publisher. ISBN 978-953-51-0783-5. 2012. Chapter 7, pp. 201–26.
García-Fuster MJ, Álvaro-Bartolomé M, García-Sevilla JA. The Fas receptor/Fas-associated protein and cocaine. Neuropathology of Drug Addictions and Substance Misuse, Volume 2, Chapter 6 pp. 63–73. Editor: Dr. Victor R. Preedy. Academic Press (Elsevier). 2016.
Honer WG. Pathology of presynaptic proteins in Alzheimer's disease: more than simple loss of terminals. Neurobiol Aging. 2003;24:1047–62.
Article
CAS
PubMed
Google Scholar
Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007;14:32–43.
Article
CAS
PubMed
Google Scholar
Sastry PS, Rao KS. Apoptosis and the nervous system. J Neurochem. 2000;74:1–20.
Article
CAS
PubMed
Google Scholar
Burke RE. Programmed cell death and new discoveries in the genetics of parkinsonism. J Neurochem. 2008;104:875–90.
Article
CAS
PubMed
Google Scholar
García-Fuster MJ, Callado LF, Sastre M, Meana JJ, García-Sevilla JA. FADD adaptor in Alzheimer’s disease: A preliminary study utilizing postmortem human brains and a transgenic mouse model. 10th FENS Forum of Neuroscience, abstract number FENS-0646. 2015.
Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol. 2016;36:128–34.
Article
CAS
PubMed
Google Scholar
Hartmann A, Mouatt-Prigent A, Faucheux BA, Agid Y, Hirsch EC. FADD: a link between TNF family receptors and caspases in Parkinson’s disease. Neurology. 2002;58:308–10.
Article
CAS
PubMed
Google Scholar
Bi FF, Xiao B, Hu YQ, Tian FF, Wu ZG, Ding L, Zhou XF. Expression and localization of Fas-associated proteins following focal cerebral ischemia in rats. Brain Res. 2008;1191:30–8.
Article
CAS
PubMed
Google Scholar
Tewari R, Sharma V, Koul N, Sen E. Involvement of miltefosine-mediated ERK activation in glioma cell apoptosis through Fas regulation. J Neurochem. 2008;107:616–27.
Article
CAS
PubMed
Google Scholar
Bondolfi L, Calhoun M, Ermini F, Kuhn HG, Wiederhold KH, Walker L, Staufenbiel M, Jucker M. Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci. 2002;22:515–22.
CAS
PubMed
Google Scholar