Ferrer I. Astrogliopathy in Tauopathies. Neuroglia. 2018;1:126–50. doi:https://doi.org/10.3390/neuroglia1010010.
Article
Google Scholar
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev. 2018;98:239–389. doi:https://doi.org/10.1152/physrev.00042.2016.
Article
CAS
PubMed
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung W-S, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7. doi:https://doi.org/10.1038/nature21029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouali Alami N, Schurr C, Olde Heuvel F, Tang L, Li Q, Tasdogan A, Kimbara A, Nettekoven M, Ottaviani G, Raposo C, Röver S, Rogers-Evans M, Rothenhäusler B, Ullmer C, Fingerle J, Grether U, Knuesel I, Boeckers TM, Ludolph A, Wirth T, Roselli F, Baumann B. NF‐κB activation in astrocytes drives a stage‐specific beneficial neuroimmunological response in ALS. EMBO J. 2018;37:e98697. doi:https://doi.org/10.15252/embj.201798697.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao C, Ardura-fabregat A, Lima KA, De, Gutiérrez-vázquez C, Hewson P, Staszewski O, Blain M, Healy L, Neziraj T, Borio M, Wheeler M, Dragin LL, Laplaud DA, Antel J, Alvarez JI, Prinz M, Quintana FJ. Microglial control of astrocytes in response to microbial metabolites. Nature. 2018;557:724–8. doi:https://doi.org/10.1038/s41586-018-0119-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun SP, Kam T, Panicker N, Kim S, Oh Y, Park J, Kwon S, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D, Kang S, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson ’ s disease. Nat Med. 2018;24:931–8. doi:https://doi.org/10.1038/s41591-018-0051-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SEJ, Couturier CP, Watson BR, Scalisi G, Alkwai S, Rothhammer V, Rotem A, Heyman JA, Thaploo S, Sanmarco LM, Ragoussis J, Weitz DA, Petrecca K, Moffitt JR, Becher B, Antel JP, Prat A, Quintana FJ. MAFG-driven astrocytes promote CNS inflammation. Nature. 2020;578:593–9. doi:https://doi.org/10.1038/s41586-020-1999-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arranz AM, De Strooper B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol. 2019;18:406–14. doi:https://doi.org/10.1016/S1474-4422(18)30490-3.
Article
CAS
PubMed
Google Scholar
Hsu ET, Gangolli M, Su S, Holleran L, Stein TD, Alvarez VE. Astrocytic degeneration in chronic traumatic encephalopathy. Acta Neuropathol. 2018;136:955–72. doi:https://doi.org/10.1007/s00401-018-1902-3.
Article
PubMed
Google Scholar
Pike CJ, Cummings BJ, Cotman CW. Early association of reactive astrocytes with senile plaques in Alzheimer’s disease. Exp Neurol. 1995;132:172–9. doi:https://doi.org/10.1016/0014-4886(95)90022-5.
Article
CAS
PubMed
Google Scholar
Colombo JA, Quinn B, Puissant V. Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull. 2002;58:235–42. doi:https://doi.org/10.1016/S0361-9230(02)00785-2.
Article
CAS
PubMed
Google Scholar
Mulder SD, Veerhuis R, Blankenstein MA, Nielsen HM. The effect of amyloid associated proteins on the expression of genes involved in amyloid-β clearance by adult human astrocytes. Exp Neurol. 2012;233:373–9. doi:https://doi.org/10.1016/j.expneurol.2011.11.001.
Article
CAS
PubMed
Google Scholar
Orre M, Kamphuis W, Osborn LM, Jansen AHP, Kooijman L, Bossers K, Hol EM. Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging. 2014;35:2746–60. doi:https://doi.org/10.1016/j.neurobiolaging.2014.06.004.
Article
CAS
PubMed
Google Scholar
Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, Green G, Dionne D, Nguyen L, Marshall J, Chen F, Zhang F, Kaplan T, Regev A, Schwartz M. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci. 2020;23(6):701–6. doi:https://doi.org/10.1038/s41593-020-0624-8.
Article
CAS
PubMed
Google Scholar
Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice. Science. 2009;323(5918):1211–5. doi:https://doi.org/10.1126/science.1169096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abramov AY, Canevari L, Duchen MR. β-Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase. J Neurosci. 2004;24(2):565–75. doi:https://doi.org/10.1523/JNEUROSCI.4042-03.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smit T, Deshayes NAC, Borchelt DR, Kamphuis W, Middeldorp J, Hol EM. Reactive astrocytes as treatment targets in Alzheimer’s disease—Systematic review of studies using the APPswePS1dE9 mouse model. Glia. 2021. doi:https://doi.org/10.1002/glia.23981.
Article
PubMed
PubMed Central
Google Scholar
Lian H, Yang L, Cole A, Sun L, Chiang ACA, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H. NFκB-Activated Astroglial Release of Complement C3 Compromises Neuronal Morphology and Function Associated with Alzheimer’s Disease. Neuron. 2015;85:101–15. doi:https://doi.org/10.1016/j.neuron.2014.11.018.
Article
CAS
PubMed
Google Scholar
Lian H, Litvinchuk A, Chiang AC-A, Aithmitti N, Jankowsky JL, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer’s Disease. J Neurosci. 2016;36:577–89. doi:https://doi.org/10.1523/JNEUROSCI.2117-15.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diniz LP, Tortelli V, Matias XI, Morgado J, Be AP, Melo XHM, Seixas XGS, Alves-leon XSV, Souza XJM, De, Ferreira XST, Felice XFG, De, Gomes A. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer’s Disease Model. J Neurosci. 2017;37:6797–809. doi:https://doi.org/10.1523/JNEUROSCI.3351-16.2017.
Article
CAS
PubMed
Google Scholar
Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M. Uniquely Hominid Features of Adult Human Astrocytes. J Neurosci. 2009;29:3276–87. doi:https://doi.org/10.1523/JNEUROSCI.4707-08.200922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MSB, Li G, Duncan JA, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MGH, Barres BA. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron. 2016;89:37–53. doi:https://doi.org/10.1016/j.neuron.2015.11.013.
Article
CAS
PubMed
Google Scholar
Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell. 2013;12(3):342–53. doi:https://doi.org/10.1016/j.stem.2012.12.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarassishin L, Suh HS, Lee SC. LPS and IL-1 differentially activate mouse and human astrocytes: Role of CD14. Glia. 2014;62:999–1013. doi:https://doi.org/10.1002/glia.22657.
Article
PubMed
PubMed Central
Google Scholar
Lundin A, Delsing L, Clausen M, Ricchiuto P, Sanchez J, Sabirsh A, Ding M, Synnergren J, Zetterberg H, Brolén G, Hicks R, Herland A, Falk A. Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models. Stem Cell Reports. 2018;10:1030–45. doi:https://doi.org/10.1016/j.stemcr.2018.01.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Davis MD, Martens YA, Shinohara M, Graff-radford NR, Younkin SG, Wszolek ZK, Kanekiyo T, Bu G. APOE e 4 / e 4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum Mol Genetics. 2017;26:2690–700. doi:https://doi.org/10.1093/hmg/ddx155.
Article
CAS
Google Scholar
Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M, Shakirzyanova A, Leskelä S, Sarajärvi T, Viitanen M, Rinne JO, Hiltunen M, Haapasalo A, Giniatullin R, Tavi P, Zhang SC, Kanninen KM, Hämäläinen RH, Koistinaho J. PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer’s Disease. Stem Cell Reports. 2017;9:1885–97. doi:https://doi.org/10.1016/j.stemcr.2017.10.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron. 2018;98:1141–54.e7. doi:https://doi.org/10.1016/j.neuron.2018.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
TCW J, Liang SA, Qian L, Pipalia NH, Chao MJ, Bertelsen SE, Kapoor M, Marcora E, Sikora E, Holtzman D, Maxfield FR, Zhang B, Wang M, Poon WW, Goate AM. (2019) Cholesterol and Matrisome Pathways Dysregulated in Human APOE e4 Glia. bioRxiv. 713362. doi: https://doi.org/10.2139/ssrn.3435267.
Perriot S, Mathias A, Perriard G, Canales M, Jonkmans N, Merienne N, Meunier C, El Kassar L, Perrier AL, Laplaud DA, Schluep M, Déglon N, Du Pasquier R. Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Reports. 2018;11:1199–210. doi:https://doi.org/10.1016/j.stemcr.2018.09.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Espuny-Camacho I, Arranz AM, Fiers M, Snellinx A, Ando K, Munck S, Bonnefont J, Lambot L, Corthout N, Omodho L, Vanden Eynden E, Radaelli E, Tesseur I, Wray S, Ebneth A, Hardy J, Leroy K, Brion JP, Vanderhaeghen P, De Strooper B. Hallmarks of Alzheimer’s Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron. 2017;93:1066–81.e8. doi:https://doi.org/10.1016/j.neuron.2017.02.001.
Article
CAS
PubMed
Google Scholar
Mancuso R, Van Den Daele J, Fattorelli N, Wolfs L, Balusu S, Burton O, Liston A, Sierksma A, Fourne Y, Poovathingal S, Arranz-Mendiguren A, Sala Frigerio C, Claes C, Serneels L, Theys T, Perry VH, Verfaillie C, Fiers M, De Strooper B. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat Neurosci. 2019;22:2111–6. doi:https://doi.org/10.1038/s41593-019-0525-x.
Article
CAS
PubMed
Google Scholar
Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, Tu CH, McQuade A, Kolahdouzan M, Echeverria K, Claes C, Nakayama T, Azevedo R, Coufal NG, Han CZ, Cummings BJ, Davtyan H, Glass CK, Healy LM, Gandhi SP, Spitale RC, Blurton-Jones M. Development of a Chimeric Model to Study and Manipulate Human Microglia In Vivo. Neuron. 2019;103:1016–33.e10. doi:https://doi.org/10.1016/j.neuron.2019.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benraiss A, Wang S, Herrlinger S, Li X, Chandler-Militello D, Mauceri J, Burm HB, Toner M, Osipovitch M, Jim Xu Q, Ding F, Wang F, Kang N, Kang J, Curtin PC, Brunner D, Windrem MS, Munoz-Sanjuan I, Nedergaard M, Goldman SA. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun. 2016;7:11758. doi:https://doi.org/10.1038/ncomms11758.
Article
PubMed
PubMed Central
Google Scholar
Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA. Neonatal Chimerization with Human Glial Progenitor Cells Can Both Remyelinate and Rescue the Otherwise Lethally Hypomyelinated Shiverer Mouse. Cell Stem Cell. 2008;2:553–65. doi:https://doi.org/10.1016/j.stem.2008.03.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, Munir J, Schanz S, McCoy K, Miller RH, Wang S, Nedergaard M, Findling RL, Tesar PJ, Goldman SA. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell. 2017;21:195–208.e6. doi:https://doi.org/10.1016/j.stem.2017.06.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E. Amyloid β-protein (Aβ)-containing astrocytes are located preferentially near N-terminal-truncated Aβ deposits in the human entorhinal cortex. Acta Neuropathol. 2000;100(6):608–17. doi:https://doi.org/10.1007/s004010000242.
Article
CAS
PubMed
Google Scholar
TCW J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin E, Machlovi SI, Abdelaal R, Karch CM, Phatnani H, Slesinger PA, Zhang B, Goate AM, Brennand KJ. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Reports. 2017;9:600–14. doi:https://doi.org/10.1016/j.stemcr.2017.06.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Hölscher C, Mathews PM, Jucker M. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7:940–6. doi:https://doi.org/10.1038/sj.embor.7400784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154:180–91.
CAS
PubMed
Google Scholar
Chen H, Qian K, Chen W, Hu B, Blackbourn LW, Du Z, Ma L, Liu H, Knobel KM, Ayala M, Zhang SC. Human-derived neural progenitors functionally replace astrocytes in adult mice. J Clin Invest. 2015;125:1033–42. doi:https://doi.org/10.1172/JCI69097.
Article
PubMed
PubMed Central
Google Scholar
Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM, Goldman JE. Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J Neurosci. 2014;34:2285–98. doi:https://doi.org/10.1523/JNEUROSCI.4037-13.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H. Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol. 2000;59:733–48. doi:https://doi.org/10.1093/jnen/59.8.733.
Article
CAS
PubMed
Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112:389–404. doi:https://doi.org/10.1007/s00401-006-0127-z.
Article
PubMed
PubMed Central
Google Scholar
Verkhratsky A, Marutle A, Rodríguez-Arellano JJ, Nordberg A. Glial Asthenia and Functional Paralysis: A New Perspective on Neurodegeneration and Alzheimers Disease. Neuroscientist. 2015;21(5):552–68. doi:https://doi.org/10.1177/1073858414547132.
Article
CAS
PubMed
Google Scholar
Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A. Astroglial atrophy in Alzheimer’s disease. Pflugers Arch Eur J Physiol. 2019;471(10):1247–61. doi:https://doi.org/10.1007/s00424-019-02310-2.
Article
CAS
Google Scholar
Verkhratsky A, Augusto-Oliveira M, Pivoriūnas A, Popov A, Brazhe A, Semyanov A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch Eur J Physiol. 2020. doi:https://doi.org/10.1007/s00424-020-02465-3.
Article
Google Scholar
Xu R, Li X, Boreland AJ, Posyton A, Kwan K, Hart RP, Jiang P. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat Commun. 2020;11:1577. doi:https://doi.org/10.1038/s41467-020-15411-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirkeby A, Nolbrant S, Tiklova K, Heuer A, Kee N, Cardoso T, Ottosson DR, Lelos MJ, Rifes P, Dunnett SB, Grealish S, Perlmann T, Parmar M. Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson’s Disease. Cell Stem Cell. 2017;20:135–48. doi:https://doi.org/10.1016/j.stem.2016.09.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fattorelli N, Martinez-Muriana A, Wolfs L, Geric I, De Strooper B, Mancuso R. Stem-cell-derived human microglia transplanted into mouse brain to study human disease. Nat Protoc. 2021;16(2):1013–33. doi:https://doi.org/10.1038/s41596-020-00447-4.
Article
CAS
PubMed
Google Scholar
Windrem MS, Schanz SJ, Morrow C, Munir J, Chandler-Militello D, Wang S, Goldman SA. A Competitive Advantage by Neonatally Engrafted Human Glial Progenitors Yields Mice Whose Brains Are Chimeric for Human Glia. J Neurosci. 2014;34:16153–61. doi:https://doi.org/10.1523/JNEUROSCI.1510-14.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–9. doi:https://doi.org/10.1038/nature17664.
Article
CAS
PubMed
Google Scholar
Bowles KR, Julia TCW, Qian L, Jadow BM, Goate AM. Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting. PLoS One. 2019;14:1–18. doi:https://doi.org/10.1371/journal.pone.0213374.
Article
CAS
Google Scholar
Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim CAF, Tousseyn T, Balusu S, De Strooper B, Thal DR. Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol. 2020;139:463–84. doi:https://doi.org/10.1007/s00401-019-02103-y.
Article
CAS
PubMed
Google Scholar